Continuum mechanics/Stress-strain relation for thermoelasticity

From testwiki
Jump to navigation Jump to search

Relation between Cauchy stress and Green strain

Show that, for thermoelastic materials, the Cauchy stress can be expressed in terms of the Green strain as

σ=ρ𝑭e𝑬𝑭T.

Proof:

Recall that the Cauchy stress is given by

σ=ρe𝑭𝑭Tσij=ρeFikFkjT=ρeFikFjk.

The Green strain 𝑬=𝑬(𝑭)=𝑬(𝑼) and e=e(𝑭,η)=e(𝑼,η). Hence, using the chain rule,

e𝑭=e𝑬:𝑬𝑭eFik=eElmElmFik.

Now,

𝑬=12(𝑭T𝑭1)Elm=12(FlpTFpmδlm)=12(FplFpmδlm).

Taking the derivative with respect to 𝑭, we get

𝑬𝑭=12(𝑭T𝑭𝑭+𝑭T𝑭𝑭)ElmFik=12(FplFikFpm+FplFpmFik).

Therefore,

σ=12ρ[e𝑬:(𝑭T𝑭𝑭+𝑭T𝑭𝑭)]𝑭Tσij=12ρ[eElm(FplFikFpm+FplFpmFik)]Fjk.

Recall,

𝑨𝑨AijAkl=δikδjland𝑨T𝑨AjiAkl=δjkδil.

Therefore,

σij=12ρ[eElm(δpiδlkFpm+Fplδpiδmk)]Fjk=12ρ[eElm(δlkFim+Filδmk)]Fjk

or,

σij=12ρ[eEkmFim+eElkFil]Fjkσ=12ρ[𝑭(e𝑬)T+𝑭e𝑬]𝑭T

or,

σ=12ρ𝑭[(e𝑬)T+e𝑬]𝑭T.

From the symmetry of the Cauchy stress, we have

σ=(𝑭𝑨)𝑭TandσT=𝑭(𝑭𝑨)T=𝑭𝑨T𝑭Tandσ=σT𝑨=𝑨T.

Therefore,

e𝑬=(e𝑬)T

and we get

σ=ρ𝑭e𝑬𝑭T.


Template:Subpage navbar