Lhermite's models

From testwiki
Revision as of 15:03, 3 May 2013 by imported>J2L2 (Prime numbers and the model of three arrows)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Lhermite's models are interesting ways to synthesize various objects that are apparently scattered.

Prime numbers and the model of three arrows

𝕌n=i=1f(n)([1+m=1iφ(m)n+1]×[n+11+m=1iφ(m)]×i×φ(i))

𝕌n=i=1f(n)([α+m=1iφ(m)n+α]×[n+αα+m=1iφ(m)]×i×φ(i))

with f(n)𝕌n and α>0



Pn=i=122n(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=12n(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=11+n!(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=12n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))
Pn=i=122n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))

Red balls and blue balls and prime numbers

P((1[[(n!)2n3](n!)2n3])×(m=1n(1[[(m!)2m3](m!)2m3])i)+i)=(Pin)×[[(n!)2n3](n!)2n3]+n

Red balls and blue balls and prime numbers according to Wilson's theorem

Prime numbers and the model of three arrows according to Wilson's theorem

n
(n1)! 1(modn)n

in the same way, it is advanced that

n
[[(n1)!+1n](n1)!+1n]=1n

It's very evident that

n
[[(n1)!+1n](n1)!+1n]=0n

Therefore, according to Lhermite's models and Wilson's theorem, there are two evident theorems :

n*
[[(n1)!+1n](n1)!+1n][1n]=1n
n*
[[(n1)!+1n](n1)!+1n][1n]=0n

Therefore the following relation becomes true :

n*
[[(n1)!+1n](n1)!+1n][1n]=1[[(n!)2n3](n!)2n3]


Let's choose one of the formulas that are indicated in the first section :

Pn=i=122n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))


let's replace

1[[(m!)2m3](m!)2m3]by[[(m1)!+1m](m1)!+1m][1m]

and

1[[(i!)2i3](i!)2i3]by[[(i1)!+1i](i1)!+1i][1i]

Therefore an equivalent expression is :

Pn=i=122n([1+m=1i([[(m1)!+1m](m1)!+1m][1m])n+1]×[n+11+m=1i([[(m1)!+1m](m1)!+1m][1m])]×i×([[(i1)!+1i](i1)!+1i][1i]))

Function Ω according to Lhermite's models

Ω(n)=j=1n(i=1n([[nij](nij)]×(1[[(i!)2i3](i!)2i3])))

Liouville's function and Lhermite's models

λ(n)=(1)(j=1n(i=1n([[nij](nij)]×(1[[(i!)2i3](i!)2i3]))))

Three Arrows or Jonatan's Arrows

There are three possibilities :a>b or b<a or a=b . In the same way , there are three possibilities : Vi>n or Vi<n or Vi=n

with

References

See also