Lhermite's models

From testwiki
Jump to navigation Jump to search


Lhermite's models are interesting ways to synthesize various objects that are apparently scattered.

Prime numbers and the model of three arrows

𝕌n=i=1f(n)([1+m=1iφ(m)n+1]×[n+11+m=1iφ(m)]×i×φ(i))

𝕌n=i=1f(n)([α+m=1iφ(m)n+α]×[n+αα+m=1iφ(m)]×i×φ(i))

with f(n)𝕌n and α>0



Pn=i=122n(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=12n(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=11+n!(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=12n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))
Pn=i=122n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))

Red balls and blue balls and prime numbers

P((1[[(n!)2n3](n!)2n3])×(m=1n(1[[(m!)2m3](m!)2m3])i)+i)=(Pin)×[[(n!)2n3](n!)2n3]+n

Red balls and blue balls and prime numbers according to Wilson's theorem

Prime numbers and the model of three arrows according to Wilson's theorem

n
(n1)! 1(modn)n

in the same way, it is advanced that

n
[[(n1)!+1n](n1)!+1n]=1n

It's very evident that

n
[[(n1)!+1n](n1)!+1n]=0n

Therefore, according to Lhermite's models and Wilson's theorem, there are two evident theorems :

n*
[[(n1)!+1n](n1)!+1n][1n]=1n
n*
[[(n1)!+1n](n1)!+1n][1n]=0n

Therefore the following relation becomes true :

n*
[[(n1)!+1n](n1)!+1n][1n]=1[[(n!)2n3](n!)2n3]


Let's choose one of the formulas that are indicated in the first section :

Pn=i=122n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))


let's replace

1[[(m!)2m3](m!)2m3]by[[(m1)!+1m](m1)!+1m][1m]

and

1[[(i!)2i3](i!)2i3]by[[(i1)!+1i](i1)!+1i][1i]

Therefore an equivalent expression is :

Pn=i=122n([1+m=1i([[(m1)!+1m](m1)!+1m][1m])n+1]×[n+11+m=1i([[(m1)!+1m](m1)!+1m][1m])]×i×([[(i1)!+1i](i1)!+1i][1i]))

Function Ω according to Lhermite's models

Ω(n)=j=1n(i=1n([[nij](nij)]×(1[[(i!)2i3](i!)2i3])))

Liouville's function and Lhermite's models

λ(n)=(1)(j=1n(i=1n([[nij](nij)]×(1[[(i!)2i3](i!)2i3]))))

Three Arrows or Jonatan's Arrows

There are three possibilities :a>b or b<a or a=b . In the same way , there are three possibilities : Vi>n or Vi<n or Vi=n

with

References

See also