Elasticity/Kinematics example 3

From testwiki
Revision as of 02:38, 5 October 2021 by imported>Dave Braunschweig (Dave Braunschweig moved page Introduction to Elasticity/Kinematics example 3 to Elasticity/Kinematics example 3: Rename)
(diff) โ† Older revision | Latest revision (diff) | Newer revision โ†’ (diff)
Jump to navigation Jump to search

Example 3

Given:

Unit square (X1,X2)[0,1] with displacement fields :

  1. ๐ฎ=κX2๐ž^1+κX1๐ž^2.
  2. ๐ฎ=κX2๐ž^1+κX1๐ž^2.
  3. ๐ฎ=κX12๐ž^2.

Sketch: Deformed configuration in x1,x2 plane.

Solution

The displacement ๐ฎ=๐ฑ๐—. Hence, ๐ฑ=๐ฎ+๐—. In the reference configuration, ๐ฎ=0 and ๐ฑ=๐—. Hence, in the (x1,x2) plane, the initial square is the same shape as the unit square in the (X1,X2) plane. We can use Maple to find out the values of x1 and x2 after the deformation ๐ฎ.

  with(linalg):</code>
  X := array(1..3): x := array(1..3): u = array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): e3 = array(1..3,[0,0,1]):
  ua := evalm(k*X[2]*e1 + k*X[1]*e2):
  ub := evalm(-k*X[2]*e1 + k*X[1]*e2);
  uc := evalm(k*X[1]^2*e2);
๐‘ข๐‘Ž:=[kX2,kX1,0]
๐‘ข๐‘:=[kX2,kX1,0]
๐‘ข๐‘:=[0,kX12,0]
  xa := evalm(ua + X);
  xb := evalm(ub + X);
  xc := evalm(uc + X);</code>
๐‘ฅ๐‘Ž:=[kX2+X1,kX1+X2,X3]
๐‘ฅ๐‘:=[kX2+X1,kX1+X2,X3]
๐‘ฅ๐‘:=[X1,kX12+X2,X3]

Plots of the deformed body are shown below

File:Kinematics ex3 fig.png
Deformed shapes

Template:Subpage navbar