Complex Analysis/Exercises/Sheet 3

From testwiki
Revision as of 13:16, 14 January 2025 by imported>Eshaa2024 (New resource with "== Exercise on Complex Analysis == ==== Task (Integrals, 5 Points) ==== Let<math>\gamma \colon[0,1] \to \mathbf C</math>,<math>t \mapsto \exp(2\pi i t)</math> ,be the standard parametrization of the unit circle. Determine for <math>n \in \mathbf Z</math> the Integral <center><math> \int_\gamma z^n \, dz</math></center> ==== Task (Quadratic Path, 5 Points) ==== Let <math>\gamma\colon [0,4] \to \mathbf C</math> be parametrized by <center><math>t \mapsto \begin{cases} -(1+i...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Exercise on Complex Analysis

Task (Integrals, 5 Points)

Let

γ:[0,1]𝐂

,

texp(2πit)

,be the standard parametrization of the unit circle. Determine for

n𝐙

the Integral

γzndz

Task (Quadratic Path, 5 Points)

Let γ:[0,4]𝐂 be parametrized by

t{(1+i)+2tt[0,1]1i+2i(t1)t[1,2]1+i2(t2)t[2,3]1+i2i(t3)t[3,4]

given parameterization of the unit square.Calculate

γz1dz

Task (Estimation, 5 Points)

Let f:[a,b]𝐂 be integrable. Show that

|abRef(t)dt||abf(t)dt|.

Task (Inverse, 5 Points)

Let γ:[a,b]𝐂 be an integration path and f:𝐂𝐂 be continuous. Define γ:[a,b]𝐂 durch γ(t):=γ(a+bt). Man zeige

γf(z)dz=γf(z)dz

Translation and Version Control

This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity:

https://de.wikiversity.org/wiki/Kurs:Funktionentheorie/Übungen/3._Zettel

  • Date: 01/14/2024


de:Kurs:Funktionentheorie/Übungen/3._Zettel