Complex Analysis/Exercises/Sheet 3

From testwiki
Jump to navigation Jump to search

Exercise on Complex Analysis

Task (Integrals, 5 Points)

Let

γ:[0,1]𝐂

,

texp(2πit)

,be the standard parametrization of the unit circle. Determine for

n𝐙

the Integral

γzndz

Task (Quadratic Path, 5 Points)

Let γ:[0,4]𝐂 be parametrized by

t{(1+i)+2tt[0,1]1i+2i(t1)t[1,2]1+i2(t2)t[2,3]1+i2i(t3)t[3,4]

given parameterization of the unit square.Calculate

γz1dz

Task (Estimation, 5 Points)

Let f:[a,b]𝐂 be integrable. Show that

|abRef(t)dt||abf(t)dt|.

Task (Inverse, 5 Points)

Let γ:[a,b]𝐂 be an integration path and f:𝐂𝐂 be continuous. Define γ:[a,b]𝐂 durch γ(t):=γ(a+bt). Man zeige

γf(z)dz=γf(z)dz

Translation and Version Control

This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity:

https://de.wikiversity.org/wiki/Kurs:Funktionentheorie/Übungen/3._Zettel

  • Date: 01/14/2024


de:Kurs:Funktionentheorie/Übungen/3._Zettel