Advanced Mechanics of Materials and Applied Elasticity

From testwiki
Jump to navigation Jump to search

Template:Engineering

Template:Physics

Template:TOCright

Equation of Advanced Mechanics of Materials and Applied Elasticity

REDIRECT User:Oh_Isaac

Chapter 1:Analysis of Stress

three-dimensional state of stress

[τi,j]=[σxτx,yτx,zτy,xσyτy,zτz,xτz,yσz]

prismatic bars of linearly elastic material

  • axial loading σx=PA
  • torsion τ=TρJ
  • bending σx=MyI
  • shear τ=VQIb
T torque.
V vertical shear force from bending force.
I moment of inertia about neutral axis(N.A.).
J polar moment of inertia of circular cross section.
ρ distance from the center of torque to the point.
Q first moment about N.A. of the area beyond the point at which \tau_{x,y} is calculated.

thin-walled pressure vessels

  • cylinder σθ=prt.
σa=pr2t.
  • sphere σ=pr2t.
σθ tangential stress in cylinder wall.
σa axial stress in cylinder wall.
σ membrane stress in sphere wall.
p internal pressure.
t wall thickness.
r mean radius.

axially loaded members

σx=σxcos2θ.

τxy=σxsinθcosθ

σmax=σx

τmax=±0.5σx

θmaxσ=0,180.
ρmaxσ=45,135.

differential equations of equilibrium

τi,jxj+Fi=0,i,j=x,y,z.

plane-stress transformation

(2-dimensional stress, neglect the stress in the z coordinate.)

σx=12(σx+σy)+12(σxσy)cos2θ+τxysin2θ

τxy=12(σxσy)sin2θ+τxycos2θ

σy=12(σx+σy)12(σxσy)cos2θτxysin2θ

Stress tensor

σx+σy=σx+σy=constant.

θmin=31.7+90(+180).

θmax=31.7(+180).

τmin=31.7(+90).

τmax=31.7+45(+90).

principal stresses in plane

σmax,min=σ1,2=σx+σy2±(σxσy2)2+τxy2

τmax=±12(σ1σ2)

τ=τave=12(σ1σ2)