Advanced elasticity/Motion and displacement

From testwiki
Jump to navigation Jump to search

Motion

Let the undeformed (or reference) configuration of the body be Ω0 and let the undeformed boundary be Γ0. Let the deformed (or current) configuration be Ω with boundary Γ. Let φ(๐—,t) be the motion that takes the body from the reference to the current configuration (see Figure 1).

Figure 1. The motion of a body.

We write

๐ฑ=φ(๐‘ฟ,t)

where ๐ฑ is the position of material point ๐‘ฟ at time t.

In index notation,

xi=φi(Xj,t),i,j=1,2,3.

Displacement

The displacement of a material point is given by

๐ฎ(๐‘ฟ,t)=φ(๐‘ฟ,t)φ(๐‘ฟ,0)=φ(๐‘ฟ,t)๐‘ฟ=๐ฑ๐‘ฟ.

In index notation,

ui=φi(Xj,t)Xi=xiXi.

Velocity

The velocity is the material time derivative of the motion (i.e., the time derivative with ๐— held constant). This type of derivative is also called the total derivative.

๐ฏ(๐‘ฟ,t)=t[φ(๐‘ฟ,t)].

Now,

๐ฎ(๐‘ฟ,t)=φ(๐‘ฟ,t)๐‘ฟ.

Therefore, the material time derivative of ๐ฎ is

๐ฎห™=t[๐ฎ(๐‘ฟ,t)]=t[φ(๐‘ฟ,t)๐‘ฟ]=t[φ(๐‘ฟ,t)]=๐ฏ(๐‘ฟ,t).

Alternatively, we could have expressed the velocity in terms of the spatial coordinates ๐ฑ. Let

๐ฎ(๐ฑ,t)=๐ฎ(φ(๐‘ฟ,t),t).

Then the material time derivative of ๐ฎ(๐ฑ,t) is

DDt[๐ฎ(๐ฑ,t)]=๐ฎt+๐ฎ๐ฑ๐ฑt=๐ฎt+๐ฎ๐ฑt[φ(๐‘ฟ,t)]=๐ฏ(๐ฑ,t)+๐ฎ๐ฑ๐ฏ(๐‘ฟ,t).

Acceleration

The acceleration is the material time derivative of the velocity of a material point.

๐š(๐‘ฟ,t)=t[๐ฏ(๐‘ฟ,t)]=๐ฏห™=2t2[๐ฎ(๐‘ฟ,t)]=๐ฎยจ.

Template:Subpage navbar