Cheat sheets/Quantum mechanical scattering

From testwiki
Jump to navigation Jump to search

Schrodinger equation

(Assume potential is radially symmetric) [22m2+V(r)]ψ(r)=Eψ(r)

If we put

U=2mV(r)

then

[2+k2U(r)]ψ(r)=0

Recall

=rr^+1rθθ^+1rsinθϕϕ^

One important result

(2+k2)eikrr=4πδ3(r)

Green's function

G(r)=d3p(2π)3eipr1k2p2=14πreikr

Simple energy relationships

E=|p|22m=22m|k|2=12m|v|2

Wavefunction

ψk(r)=eikr+f(k,θ,ϕ)eikrr

Incoming: eikr
Scattered: eikrr

Scattering Amplitude: f(k,φ,θ)

f(k,ϕ,θ)=14πeikru(r)ψk(r)dr
f=m2π2ϕk|V|ψk
Plane Wave: ϕk(r)=eikr

Differential cross section

dσdΩ=|f(k,θ,ϕ)|2

Total cross section

dΩσ(Ω)=02πdϕ0πsinθdθ|f(θ,ϕ)|2