Complex Analysis/Exercises/Sheet 2/Exercise 4

From testwiki
Jump to navigation Jump to search

Problem (Chain Rule, 5 Points)

Let f,g:𝐂𝐂 be continuously differentiable functions. Prove that

z(fg)=fzggz+fz¯gg¯z

and

z¯(fg)=fzggz¯+fz¯gg¯z¯

apply.

Solution

We recall (Fischer/Lieb, Page 21 at the bottom): For a differentiable functionf:U𝐂 , the partial derivatives with respect to z and z¯ are characterized as follows: Let A1,A2:U𝐂 be continuous functions such that

f(z)=f(z0)+A1(z)(zz0)+A2(z)(z¯z¯0)

so is zf(z0)=A1(z0) and z¯f(z0)=A2(z0).

We will use this description of the Wirtinger derivatives. Let z0𝐂. There g in z0 is differentiable , we have continuous functionsB1,B2 so that

g(z)=g(z0)+B1(z)(zz0)+B2(z)(z¯z¯0)

applies.This means

(fg)(z)=f(g(z))=f(g(z0)+B1(z)(zz0)+B2(z)(z¯z¯0))

Now set

w:=g(z0)+B1(z)(zz0)+B2(z)(z¯z¯0)=g(z)w0:=g(z0)

Da f is w0 differentiable ,there exist continuous functions A1, A2 so,that

f(w)=f(w0)+A1(w)(ww0)+A2(w)(w¯w¯0)

if we insert, this results in

(fg)(z)=f(g(z))=f(g(z0)+B1(z)(zz0)+B2(z)(z¯z¯0))=f(w0)+A1(w)(ww0)+A2(w)(w¯w¯0)=f(g(z0))+A1(g(z))(B1(z)(zz0)+B2(z)(z¯z¯0))+A2(g(z))(B1(z)(zz0)+B2(z)(z¯z¯0))=(fg)(z0)+(A1(g(z))B1(z)+A2(g(z))B2(z))C1(z):=(zz0)+(A1(g(z))B2(z)+A2(g(z))B1(z))C2(z):=(z¯z¯0)

Da C1 and C2 of cotinous functions are continuous,is fg partially differentiable and

z(fg)(z0)=C1(z0)=A1(g(z0))B1(z0)+A2(g(z0))B2(z0)=fz(w0)gz(z0)+fz¯(w0)gz¯(z0)

Continuing above,this lead to

z(fg)(z0)=C1(z0)=A1(g(z0))B1(z0)+A2(g(z0))B2(z0)=fz(w0)gz(z0)+fz¯(w0)gz¯(z0)=fz(w0)gz(z0)+fz¯(w0)g¯z(z0)=fzg(z0)gz(z0)+fz¯g(z0)g¯z(z0)

and claimed. Analogously follows

z¯(fg)(z0)=C2(z0)=A1(g(z0))B2(z0)+A1(g(z0))B1(z0)=fz(w0)gz¯(z0)+fz¯(w0)gz(z0)=fz(w0)gz¯(z0)+fz¯(w0)g¯z¯(z0)=fzg(z0)gz(z0)+fz¯g(z0)g¯z¯(z0)

Translation and Version Control

This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity:

https://de.wikiversity.org/wiki/Kurs:Funktionentheorie/Übungen/2._Zettel/Aufgabe_4

  • Date: 01/14/2024


de:Kurs:Funktionentheorie/Übungen/2._Zettel/Aufgabe_4