Complex Analysis/Exercises/Sheet 5

From testwiki
Jump to navigation Jump to search

Exercise on Complex Analysis

Problem (Integrals, 5 points)

Calculate the following integrals using the Cauchy integral formula:

  1. |z+1|=1dz(z+1)(z1)3
  2. |z|=2sinzz+idz
  3. |z|=rdz(za)n(zb)m mit |a|<r<|b|, n,m1.

Problem (Cauchy, 10 points)

Let

S1:={z𝐂:|z|=1}

. On

𝐂S1

, consider the function

f(z):=S1dζζ(ζz)

Determine f. At which points of S1 does f have a limit?

Problem (More Integrals, 5 points)

Use the Cauchy integral formula to determine

02πeksintsin(ksint)dt

Hint: Consider

zekzz

on the unit circle.

Translation and Version Control

This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity:

https://de.wikiversity.org/wiki/Kurs:Funktionentheorie/Übungen/5._Zettel

  • Date: 01/14/2024


de:Kurs:Funktionentheorie/Übungen/5._Zettel