Composite numbers and Lhermite

From testwiki
Jump to navigation Jump to search


 (𝕏n)  is the nth composite number.

φ for composite numbers

n*

1[[(n1)!+1n](n1)!+1n]=1n𝕏

1[[(n1)!+1n](n1)!+1n]=0n𝕏


φ(n)=1[[(n1)!+1n](n1)!+1n]

φ(n)=([[(n!)2n3](n!)2n3][1n])

Expresion of (Xn) according to Lhermite's model

𝕏n=i=14m([1+m=1iφ(m)n+1]×[n+11+m=1iφ(m)]×i×φ(i))


𝕏n=i=12m+2([1+m=1iφ(m)n+1]×[n+11+m=1iφ(m)]×i×φ(i))