(𝕏n) is the nth composite number.
∀n∈ℕ*
1−[[(n−1)!+1n](n−1)!+1n]=0⟺n∉𝕏
φ(n)=1−[[(n−1)!+1n](n−1)!+1n]
φ(n)=([[(n!)2n3](n!)2n3]−[1n])
𝕏n=∑i=14m([1+∑m=1iφ(m)n+1]×[n+11+∑m=1iφ(m)]×i×φ(i))
𝕏n=∑i=12m+2([1+∑m=1iφ(m)n+1]×[n+11+∑m=1iφ(m)]×i×φ(i))