Continuum mechanics/Clausius-Duhem inequality for thermoelasticity

From testwiki
Jump to navigation Jump to search

Clausius-Duhem inequality for thermoelasticity

For thermoelastic materials, the internal energy is a function only of the deformation gradient and the temperature, i.e., e=e(𝑭,T). Show that, for thermoelastic materials, the Clausius-Duhem inequality

ρ(eΛ™TηΛ™)σ:𝐯πͺTT

can be expressed as

ρ(eηT)ηΛ™+(ρe𝑭σ𝑭T):𝑭˙πͺTT.

Proof:

Since e=e(𝑭,T), we have

eΛ™=e𝑭:𝑭˙+eηηΛ™.

Therefore,

ρ(e𝑭:𝑭˙+eηηΛ™TηΛ™)σ:𝐯πͺTTorρ(eηT)ηΛ™+ρe𝑭:𝑭˙σ:𝐯πͺTT.

Now, 𝐯=𝒍=𝑭˙𝑭1. Therefore, using the identity 𝑨:(𝑩π‘ͺ)=(𝑨π‘ͺT):𝑩, we have

σ:𝐯=σ:(𝑭˙𝑭1)=(σ𝑭T):𝑭˙.

Hence,

ρ(eηT)ηΛ™+ρe𝑭:𝑭˙(σ𝑭T):𝑭˙πͺTT

or,

ρ(eηT)ηΛ™+(ρe𝑭σ𝑭T):𝑭˙πͺTT.

Template:Subpage navbar