Continuum mechanics/Entropy inequality

From testwiki
Jump to navigation Jump to search

Clausius-Duhem inequality

The Clausius-Duhem inequality can be expressed in integral form as

ddt(ΩρηdV)Ωρη(un𝐯𝐧)dAΩπͺ𝐧TdA+ΩρsTdV.

In differential form the Clusius-Duhem inequality can be written as

ρηΛ™(πͺT)+ρsT.

Proof:

Assume that Ω is an arbitrary fixed control volume. Then un=0 and the derivative can be taken inside the integral to give

Ωt(ρη)dVΩρη(𝐯𝐧)dAΩπͺ𝐧TdA+ΩρsTdV.

Using the divergence theorem, we get

Ωt(ρη)dVΩ(ρη𝐯)dVΩ(πͺT)dV+ΩρsTdV.

Since Ω is arbitrary, we must have

t(ρη)(ρη𝐯)(πͺT)+ρsT.

Expanding out

ρtη+ρηt(ρη)𝐯ρη(𝐯)(πͺT)+ρsT

or,

ρtη+ρηtηρ𝐯ρη𝐯ρη(𝐯)(πͺT)+ρsT

or,

(ρt+ρ𝐯+ρ𝐯)η+ρ(ηt+η𝐯)(πͺT)+ρsT.

Now, the material time derivatives of ρ and η are given by

ρΛ™=ρt+ρ𝐯;ηΛ™=ηt+η𝐯.

Therefore,

(ρΛ™+ρ𝐯)η+ρηΛ™(πͺT)+ρsT.

From the conservation of mass ρΛ™+ρ𝐯=0. Hence,

ρηΛ™(πͺT)+ρsT.

Clausius-Duhem inequality in terms of internal energy

In terms of the specific entropy, the Clausius-Duhem inequality is written as

ρηΛ™(πͺT)+ρsT

Show that the inequality can be expressed in terms of the internal energy as

ρ(eΛ™TηΛ™)σ:𝐯πͺTT.

Proof:

Using the identity (φ𝐯)=φ𝐯+𝐯φ in the Clausius-Duhem inequality, we get

ρηΛ™(πͺT)+ρsTorρηΛ™1Tπͺπͺ(1T)+ρsT.

Now, using index notation with respect to a Cartesian basis 𝐞j,

(1T)=xj(T1)𝐞j=(T2)Txj𝐞j=1T2T.

Hence,

ρηΛ™1Tπͺ+1T2πͺT+ρsTorρηΛ™1T(πͺρs)+1T2πͺT.

Recall the balance of energy

ρeΛ™σ:𝐯+πͺρs=0ρeΛ™σ:𝐯=(πͺρs).

Therefore,

ρηΛ™1T(ρeΛ™σ:𝐯)+1T2πͺTρηΛ™TρeΛ™σ:𝐯+πͺTT.

Rearranging,

ρ(eΛ™TηΛ™)σ:𝐯πͺTT.


Template:Subpage navbar