Continuum mechanics/Reynolds transport theorem

From testwiki
Jump to navigation Jump to search

Reynolds transport theorem

Let Ω(t) be a region in Euclidean space with boundary Ω(t). Let 𝐱(t) be the positions of points in the region and let 𝐯(𝐱,t) be the velocity field in the region. Let 𝐧(𝐱,t) be the outward unit normal to the boundary. Let 𝐟(𝐱,t) be a vector field in the region (it may also be a scalar field). Show that

ddt(Ω(t)𝐟dV)=Ω(t)𝐟tdV+Ω(t)(𝐯𝐧)𝐟dA.

This relation is also known as the Reynold's Transport Theorem and is a generalization of the Leibniz rule. Content of example.

Proof:

Let Ω0 be reference configuration of the region Ω(t). Let the motion and the deformation gradient be given by

𝐱=φ(𝐗,t);𝑭(𝐗,t)=φ.

Let J(𝐗,t)=det[𝑭(𝐗,t)]. Then, integrals in the current and the reference configurations are related by

Ω(t)𝐟(𝐱,t)dV=Ω0𝐟[φ(𝐗,t),t]J(𝐗,t)dV0=Ω0𝐟^(𝐗,t)J(𝐗,t)dV0.

The time derivative of an integral over a volume is defined as

ddt(Ω(t)𝐟(𝐱,t)dV)=limΔt01Δt(Ω(t+Δt)𝐟(𝐱,t+Δt)dVΩ(t)𝐟(𝐱,t)dV).

Converting into integrals over the reference configuration, we get

ddt(Ω(t)𝐟(𝐱,t)dV)=limΔt01Δt(Ω0𝐟^(𝐗,t+Δt)J(𝐗,t+Δt)dV0Ω0𝐟^(𝐗,t)J(𝐗,t)dV0).

Since Ω0 is independent of time, we have

ddt(Ω(t)𝐟(𝐱,t)dV)=Ω0[limΔt0𝐟^(𝐗,t+Δt)J(𝐗,t+Δt)𝐟^(𝐗,t)J(𝐗,t)Δt]dV0=Ω0t[𝐟^(𝐗,t)J(𝐗,t)]dV0=Ω0(t[𝐟^(𝐗,t)]J(𝐗,t)+𝐟^(𝐗,t)t[J(𝐗,t)])dV0

Now, the time derivative of det𝑭 is given by (see Gurtin: 1981, p. 77)

J(𝐗,t)t=t(det𝑭)=(det𝑭)(𝐯)=J(𝐗,t)𝐯(φ(𝐗,t),t)=J(𝐗,t)𝐯(𝐱,t).

Therefore,

ddt(Ω(t)𝐟(𝐱,t)dV)=Ω0(t[𝐟^(𝐗,t)]J(𝐗,t)+𝐟^(𝐗,t)J(𝐗,t)𝐯(𝐱,t))dV0=Ω0(t[𝐟^(𝐗,t)]+𝐟^(𝐗,t)𝐯(𝐱,t))J(𝐗,t)dV0=Ω(t)(πŸΛ™(𝐱,t)+𝐟(𝐱,t)𝐯(𝐱,t))dV

where πŸΛ™ is the material time derivative of 𝐟. Now, the material derivative is given by

πŸΛ™(𝐱,t)=𝐟(𝐱,t)t+[𝐟(𝐱,t)]𝐯(𝐱,t).

Therefore,

ddt(Ω(t)𝐟(𝐱,t)dV)=Ω(t)(𝐟(𝐱,t)t+[𝐟(𝐱,t)]𝐯(𝐱,t)+𝐟(𝐱,t)𝐯(𝐱,t))dV

or,

ddt(Ω(t)𝐟dV)=Ω(t)(𝐟t+𝐟𝐯+𝐟𝐯)dV.

Using the identity

(𝐯𝐰)=𝐯(𝐰)+𝐯𝐰

we then have

ddt(Ω(t)𝐟dV)=Ω(t)(𝐟t+(𝐟𝐯))dV.

Using the divergence theorem and the identity (πšπ›)𝐧=(𝐛𝐧)𝐚 we have

ddt(Ω(t)𝐟dV)=Ω(t)𝐟tdV+Ω(t)(𝐟𝐯)𝐧dA=Ω(t)𝐟tdV+Ω(t)(𝐯𝐧)𝐟dA.

References

  1. M.E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, New York, 1981.
  2. T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, Ltd., New York, 2000.

Template:Subpage navbar