Coordinate systems/Derivation of formulas

From testwiki
Jump to navigation Jump to search

The purpose of this resource is to carefully examine the Wikipedia article Del in cylindrical and spherical coordinates for accuracy.

The identities are reproduced below, and contributors are encouraged to either:

  1. Verify the identity and place its reference using a five em padding after the equation: Template:Nowrap begin{{pad|5em}}verified<ref>reference</ref>Template:Nowrap end
  2. Contribute to Wikiveristy by linking the title to a discussion and/or proof. Just click the redlink and start the page.

If you just came in from Wikipedia, the rules about treating each other with respect and obeying copyright laws remain more or less the same as on Wikipedia, but the definition of what constitutes an acceptable article is a lot looser. Here we call them "resources". Welcome to the wacky world of Wikiversity, where anything goes.

Template:TOC limit

Transformations between coordinates

  1. w:Cartesian coordinates (x, y, z)
  2. w:Cylindrical coordinates (ρ, ϕ, z)
  3. w:Spherical coordinates (r, θ, ϕ)
  4. w:Parabolic cylindrical coordinates (σ, τ, z)

*Asterisk indicates that the title is a link to more discussion

ρ=x2+y2   ,     ϕ=arctan(y/x)   ,     z=zTemplate:Padverified using mathworld[1]

x=ρcosϕ   ,     y=ρsinϕ   ,     z=z Template:Padverified using mathworld[2]

x=rsinθcosϕ   ,     y=rsinθsinϕ   ,     z=rcosθTemplate:Padverified using mathworld[3]

x=στ   ,     y=12(τ2σ2)   ,     z=zTemplate:Pad--no reference

r=x2+y2+z2   ,     θ=arctan(x2+y2/z)   ,     ϕ=arctan(y/x)Template:Padverified using mathworld[4]

r=ρ2+z2   ,     θ=arctan(ρ/z)   ,     ϕ=ϕTemplate:Padno reference

ρ=rsinθ   ,     ϕ=ϕ   ,     z=rcosθTemplate:Padno reference

ρcosϕ=στ   ,     ρsinϕ=12(τ2σ2)   ,     z=zTemplate:Padno reference

ρ^=x𝐱^+y𝐲^x2+y2ϕ^=y𝐱^+x𝐲^x2+y2𝐳^=𝐳^ Template:PadVerified, see page linked in title

𝐱^=cosϕρ^sinϕϕ^𝐲^=sinϕρ^+cosϕϕ^𝐳^=𝐳^ Template:PadVerified, see page linked in title

𝐱^=sinθcosϕ𝒓^+cosθcosϕθ^sinϕϕ^𝐲^=sinθsinϕ𝒓^+cosθsinϕθ^+cosϕϕ^𝐳^=cosθ𝒓^sinθθ^ Template:PadVerified, see page linked in title

σ^=τ𝐱^σ𝐲^τ2+σ2τ^=σ𝐱^+τ𝐲^τ2+σ2𝐳^=𝐳^

𝐫^=x𝐱^+y𝐲^+z𝐳^x2+y2+z2θ^=xz𝐱^+yz𝐲^(x2+y2)𝐳^x2+y2x2+y2+z2ϕ^=y𝐱^+x𝐲^x2+y2Template:PadVerified, see page linked in title

𝐫^=ρρ^+z𝐳^ρ2+z2θ^=zρ^ρ𝐳^ρ2+z2ϕ^=ϕ^

ρ^=sinθ𝐫^+cosθθ^ϕ^=ϕ^𝐳^=cosθ𝐫^sinθθ^

Vector and scalar fields

𝐀 is vector field and f is a scalar field. The vector field can be expressed as:

  1. Ax𝐱^+Ay𝐲^+Az𝐳^
  2. Aρρ^+Aϕϕ^+Az𝐳^
  3. Ar𝒓^+Aθθ^+Aϕϕ^
  4. Aσσ^+Aττ^+Aϕ𝐳^

f is the w:gradient of a scalar field.

  1. fx𝐱^+fy𝐲^+fz𝐳^
  2. fρρ^+1ρfϕϕ^+fz𝐳^
  3. fr𝒓^+1rfθθ^+1rsinθfϕϕ^
  4. 1σ2+τ2fσσ^+1σ2+τ2fττ^+fz𝐳^

𝐀 is the w:divergence of a vector field

  1. Axx+Ayy+Azz
  2. 1ρ(ρAρ)ρ+1ρAϕϕ+Azz
  3. 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAϕϕ
  4. 1σ2+τ2((σ2+τ2Aσ)σ+(σ2+τ2Aτ)τ)+Azz

×𝐀 is the w:curl (mathematics) of A

  1. (AzyAyz)𝐱^+(AxzAzx)𝐲^+(AyxAxy)𝐳^
  2. (1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)𝐳^
  3. 1rsinθ(θ(Aϕsinθ)Aθϕ)𝒓^+1r(1sinθArϕr(rAϕ))θ^+1r(r(rAθ)Arθ)ϕ^
  4. (1σ2+τ2AzτAτz)σ^(1σ2+τ2AzσAσz)τ^+1σ2+τ2((σ2+τ2Aσ)τ(σ2+τ2Aτ)σ)𝐳^

Δf2f is the w:Laplace operator on a scalar field

  1. 2fx2+2fy2+2fz2
  2. 1ρρ(ρfρ)+1ρ22fϕ2+2fz2
  3. 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fϕ2
  4. 1σ2+τ2(2fσ2+2fτ2)+2fz2

Δ𝐀2𝐀 is the w:Vector Laplacian of 𝐀

  1. ΔAx𝐱^+ΔAy𝐲^+ΔAz𝐳^
  2. (ΔAρAρρ22ρ2Aϕϕ)ρ^+(ΔAϕAϕρ2+2ρ2Aρϕ)ϕ^+ΔAz𝐳^
  3. (ΔAr2Arr22r2sinθ(Aθsinθ)θ2r2sinθAϕϕ)𝒓^+(ΔAθAθr2sin2θ+2r2Arθ2cosθr2sin2θAϕϕ)θ^+(ΔAϕAϕr2sin2θ+2r2sinθArϕ+2cosθr2sin2θAθϕ)ϕ^

(𝐀)𝐁 might be called the "convective derivative of B along A" (appropriate description if A' is a unit vector)Template:Pad[5]

  1. (AxBxx+AyBxy+AzBxz)𝐱^+(AxByx+AyByy+AzByz)𝐲^+(AxBzx+AyBzy+AzBzz)𝐳^
  2. (AρBρρ+AϕρBρϕ+AzBρzAϕBϕρ)ρ^+(AρBϕρ+AϕρBϕϕ+AzBϕz+AϕBρρ)ϕ^+(AρBzρ+AϕρBzϕ+AzBzz)𝐳^
  3. (ArBrr+AθrBrθ+AϕrsinθBrϕAθBθ+AϕBϕr)𝒓^+(ArBθr+AθrBθθ+AϕrsinθBθϕ+AθBrrAϕBϕcotθr)θ^+(ArBϕr+AθrBϕθ+AϕrsinθBϕϕ+AϕBrr+AϕBθcotθr)ϕ^
  1. d𝐥=dx𝐱^+dy𝐲^+dz𝐳^
  2. d𝐥=dρρ^+ρdϕϕ^+dz𝐳^
  3. d𝐥=dr𝐫^+rdθθ^+rsinθdϕϕ^
  4. d𝐥=σ2+τ2dσσ^+σ2+τ2dττ^+dz𝐳^

Differential normal area d𝐒

  1. dydz𝐱^+dxdz𝐲^+dxdy𝐳^
  2. ρdϕdzρ^+dρdzϕ^+ρdρdϕ𝐳^
  3. r2sinθdθdϕ𝐫^+rsinθdrdϕθ^+rdrdθϕ^
  4. σ2+τ2dτdzσ^+σ2+τ2dσdzτ^+(σ2+τ2)dσdτ𝐳^
  1. dV=dxdydzTemplate:Padverified[6]
  2. dV=ρdρdϕdzTemplate:Padverified[7]
  3. dV=r2sinθdrdθdϕTemplate:Padverified[8]
  4. dV=(σ2+τ2)dσdτdz

Non-trivial calculation rules:

  1. divgradff=2fΔf
  2. curlgradf×f=𝟎
  3. divcurl𝐀(×𝐀)=0
  4. curlcurl𝐀×(×𝐀)=(𝐀)2𝐀 (Lagrange's formula for del)
  5. Δ(fg)=fΔg+2fg+gΔf

References

<section begin=references />

  1. http://mathworld.wolfram.com/CylindricalCoordinates.html
  2. http://mathworld.wolfram.com/CylindricalCoordinates.html
  3. http://mathworld.wolfram.com/SphericalCoordinates.html
  4. http://mathworld.wolfram.com/SphericalCoordinates.html
  5. Cite error: Invalid <ref> tag; no text was provided for refs named Mathworld
  6. James Stewart, Calculus: Concepts and Contexts, fourth edition, Brooks Cole 2005 pp. 884-5
  7. James Stewart, Calculus: Concepts and Contexts, fourth edition, Brooks Cole 2005 pp. 884-5
  8. James Stewart, Calculus: Concepts and Contexts, fourth edition, Brooks Cole 2005 pp. 884-5

[1]

[2]



<section end=references />

Backup copy from Wikipedia

Copy or read but never change /Original Copy from Wikipedia/

Template:CourseCat