Differential equations/Exact differential equations
Jump to navigation
Jump to search
Template:RightTOC Template:Tertiary education Template:Lesson Template:Mathematics Template:25%done
Definition
A differential equation of is said to be exact if it can be written in the form where and have continuous partial derivatives such that .
Solution
Solving the differential equation consists of the following steps:
- Create a function . While integrating, add a constant function that is a function of . This is a term that becomes zero if function is differentiated with respect to .
- Differentiate the function with respect to . Set . Solve for the function .