Einstein Probabilistic Units/Black Holes

From testwiki
Jump to navigation Jump to search

This resource includes primary and/or secondary research.

Black Hole

A black hole can be defined by the Schwarzschild radius

rs=2GMbhc2

Expressing this using Einstein Probabilistic Units

rbh=2BMbh

Solving for B give us

Bbh=rbh2Mbh

The following table shows some properties of Black Hole using Einstein's Probabilistic Units (EPU); Template:Center top

Property Equation EPU
Mass Ms=21rsGc2 Ms=2cAsBs Ms=cB0AsA02
Schwarzschild radius rs=2MsGc2 rs=2MsB0 B0=Gc2=12Bs
Area As=16πMs2G2c4 As=16πMs2B02 B02=116πBs2
Density ρs=332πc6Ms2G3 ρs=332π1Ms21B03 ρs=38π1B01rs2
Entropy SBH=14kBAslP2 SBH=14kBBsB0 B0=14kBBsSBH
Temperature T=18π1MsckBc2G

Template:Center bottom

Entropy

The Bekenstein–Hawking formula for black-hole entropy is proportional to the area of its event horizon A.

SBH=kBAs4lP2=kBc3As4GJK

Using Einstein's Probabilistic units to express Bekenstein–Hawking formula;

SBH=kBc3Asc2c2G=kBc31υs21B0=kBBsB0=Constant1υs2=kB<lnW>

SBH=kBln(W)=kBBsB0=kBA02AS2

W=eS/kB=eBs/B0

Hawking radiation temperature

TH=c38πGMkB

TH=c38πμMkB=c8πkB×m2s2s2m3=18πkBQ2m

TH=18πcM1B01kB=18πμB01kB

B0=18πμMTH1kB

B=hc(THkB)M

TH=c38πGMkB