Elasticity/Axially loaded wedge

From testwiki
Jump to navigation Jump to search

Template:TOCright

Axially Loaded Wedge

File:Wedge with axial force.png
Elastic wedge loaded by an axial force

The BCs at θ=±β are

(30)tr=tθ=0;𝐧^=±𝐞^θσrθ=σθθ=0

What about the concentrated force BC?

  • What is 𝐧^ at the vertex ?
  • The traction is infinite since the force is applied on zero area. Consider equilibrium of a portion of the wedge.

At r=a, the BCs are

(31)𝐧^=𝐞^rσrθ=tr;σθθ=tθ

For equilibrium, F1=F2=M3=0. Therefore,

P1+ββ[σrr(a,θ)cosθσrθ(a,θ)sinθ]adθ=0(32)ββ[σrr(a,θ)sinθ+σrθ(a,θ)cosθ]adθ=0(33)ββ[aσrθ(a,θ)]adθ=0(34)

These constraint conditions are equivalent to the concentrated force BC.

Solution Procedure

Assume that σrθ(r,θ)=0. This satisfies the traction BCs on θ=±β and equation (34). Therefore,

(35)σrθ=r(1rφθ)=0φ=rη(θ)+ζ(r)

Hence,

(36)σθθ=2φr=ζ'(r)

That means σθθ is independent of θ. Therefore, in order to satisfy the BCs, σθθ=0, i.e.,

(37)ζ(r)=C1r+C2φ=rη(θ)+C1r=r[η(θ)+C1]=rξ(θ)

Checking for compatibility, 4φ=0, we get

(38)ξ(IV)(θ)+2ξ'(θ)+ξ(θ)=0

The general solution is

(39)ξ(θ)=Asinθ+Bcosθ+Cθsinθ+Dθcosθ

Therefore,

(40)φ=r[Asinθ+Bcosθ+Cθsinθ+Dθcosθ]

The only non-zero stress is σrr.

(41)σrr=1r[2Ccosθ2Dsinθ]

Plugging into equation (33), we get

(42)D[2βsin(2β)]=0D=0

Hence,

(43)σrr=2Crcosθ

Plugging into equation (32), we get

(44)P=C[2β+sin(2β)]C=P2β+sin(2β)

Therefore,

(45)φ=Crθsinθ=Prθsinθ2β+sin(2β)

The stress state is

(46)σrr=2Pcosθr[2β+sin(2β)];σrθ=0;σθθ=0

Special Case

β=π/2

A concentrated point load acting on a half plane.

(47)σrr=2Pcosθπr;σrθ=0;σθθ=0

Displacements

2μur=φr+αrψθ2μuθ=1rφθ+αr2ψr

where

2ψ=0r(rψθ)=2φ

Plug in φ=Crθsinθ,

r(rψθ)=2φr(rψθ)=2Crcosθrψθ=2Clnrcosθ+A(θ)ψθ=2Clnrrcosθ+A(θ)rψ=2Clnrrsinθ+η(θ)r+ξr

Plug ψ into 2ψ=0,

1r3η'(θ)+1r3η(θ)+ξ'(r)+1rξ'(r)4Cr3sinθ=0η'(θ)+η(θ)+r3ξ'(r)+r2ξ'(r)4Csinθ=0

Hence,

η'(θ)+η(θ)4Csinθ=br3ξ'(r)+r2ξ'(r)=br3

Solving,

η(θ)=2Cθcosθ+dcosθ+esinθ+bξ'(r)=fr+br2

Therefore,

2μur=2αClnrcosθ+(2α1)Cθsinθ+α(e2C)cosθαdsinθ2μuθ=2αClnrsinθ+(2α1)Csinθ+(2α1)Cθcosθαdcosθαesinθ+αfr

To fix the rigid body motion, we set uθ=0 when θ=0, and set ur=0 when θ=0 and r=L.Then,

ur=αCμln(rL)cosθ+(2α1)C2μθsinθuθ=αCμln(rL)sinθ+(2α1)C2μθcosθC2μsinθ

The displacements are singular at r=0 and r=. At θ=0,

ur=αCμln(rL)uθ=0

Is the small strain assumption satisfied ?

Template:Subpage navbar