Elasticity/Beam bending example 1

From testwiki
Jump to navigation Jump to search

Example 1

Given:

A long rectangular beam with cross section ab

Find:

A solution for the displacement and stress fields, using strong boundary conditions on the edges x2=0 and x2=b.

[Hint : Assume that the displacement can be expressed as a second degree polynomial (using the Pascal's triangle to determine the terms) u(x,y)=Ax2+By2+Cxy+Dx+Ey+F]

Solution

Step 1: Boundary conditions

atx1=0;σ13=0atx1=a;u3=0atx2=0;σ23=0atx2=b;σ23=S

Step 2: Assume a solution

Let us assume antiplane strain

u3(x1,x2)=Ax12+Bx22+Cx1x2+Dx1+Ex2+F;u1=u2=0.

Step 3: Calculate the stresses

The stresses are given by σα3=μu3,α, and σ11=σ22=σ33=σ12=0. Therefore,

σ13=μu3,1=μ(2Ax1+Cx2+D)σ23=μu3,2=μ(2Bx2+Cx1+E)

Step 4: Satisfy stress BCs

Thus we have,

0=μ(Cx2+D)0=μ(Cx1+E)S=μ(2bB+Cx1+E)

Since x1 and x2 can be arbitrary, C=D=E=0.

Hence, B=S/2μb which gives us

u3=Ax12+S2μbx22+Fσ13=μ(2Ax1)σ23=μ(2S2μbx2)

Assume that the body force is zero. Then the equilibrium condition is 2u3=0. Therefore,

u3,11+u3,22=0or,2A+2S2μb=0or,A=S2μb

Therefore, the stresses are given by

σ13=Sbx1;σ23=Sbx2

Step 5: Satisfy displacement BCs

The displacement is given by

u3=S2μbx12+S2μbx22+F

If we substitute x1=a, we cannot determine the constant F uniquely.

Hence the displacement boundary conditions have to be applied in a weak sense,

0bu3(a,x2)dx2=0or,0b(S2μba2+S2μbx22+F)dx2=0or,[S2μb(a2x2+x233)+Fx2]|0b=0or,S2μb(a2b+b33)+Fb=0or,S2μ(a2+b23)+Fb=0or,S2μ(a2b+b3)+F=0or,F=S2μb(a2b23)

Therefore,

u3=S2μb(x22x12+a2b23)

Template:Subpage navbar