Elasticity/Compatibility example 1

From testwiki
Jump to navigation Jump to search

Example 1

Given:

The compatibility equations in terms of the strains are (in index notation)

eikrejlsεij,kl=0

The stress-strain relations for a linear elastic material are

εij=1E[(1+ν)σijνσmmδij]

Show:

Substituting the stress-strain relations into the compatibility equations, show that the compatibility equation of stress can be expressed as

σii,jjδrsσii,rs(1+ν)(σij,ijδrs+σrs,iiσis,irσir,is)=0

Solution

Substituting the stress-strain relations into the left hand side of the compatibility equations and multiplying both sides by E, we get,

Eeikrejlsεij,kl=eikrejls[(1+ν)σij,klνσmm,klδij]=(1+ν)eikrejlsσij,klνeikrejlsδijσmm,kl=(1+ν)eikrejlsσij,klνenkrenlsσmm,kl=(1+ν)eikrejlsσij,klνekrnelsnσmm,kl

Now, the δe rule states that

eijkepqk=δipδjqδiqδjp

Therefore,

Eeikrejlsεij,kl=(1+ν)eikrejlsσij,klν(δklδrsδksδrl)σmm,kl=(1+ν)eikrejlsσij,klν(σmm,nnδrsσmm,sr)

Recall that,

eikrejls=det[δijδilδisδkjδklδksδrjδrlδrs]=δijδklδrsδijδksδrlδilδkjδrs+δilδksδrj+δisδkjδrlδisδklδrj

Therefore,

δijδklδrsσij,kl=σii,jjδrsδijδksδrlσij,kl=σii,rsδilδkjδrsσij,kl=σij,ijδrsδilδksδrjσij,kl=σir,isδisδkjδrlσij,kl=σis,irδisδklδrjσij,kl=σsr,jj

Hence,

Eeikrejlsεij,kl=(1+ν)(σii,jjδrsσii,rsσij,ijδrs+σir,is+σis,irσsr,jj)ν(σii,jjδrsσii,rs)=σii,jjδrsσii,rs(1+ν)(σij,ijδrs+σrs,iiσis,irσir,is)=0

Hence shown.

Template:Subpage navbar