Elasticity/Constitutive example 2

From testwiki
Jump to navigation Jump to search

Example 1

Convert the stress-strain relation for isotropic materials (in matrix form) into an equation in index notation. Show all the steps in the process.

Solution

The stress-strain relation is

[ε11ε22ε33ε23ε31ε12]=1E[1νν000ν1ν000νν10000001+ν0000001+ν0000001+ν][σ11σ22σ33σ23σ31σ12]

Let us expand out the terms and put all of them in a similar form. Thus,

Eε11=(1+ν)σ11ν(σ11+σ22+σ33)(1)Eε22=(1+ν)σ22ν(σ11+σ22+σ33)(1)Eε33=(1+ν)σ33ν(σ11+σ22+σ33)(1)Eε23=(1+ν)σ23ν(σ11+σ22+σ33)(0)Eε31=(1+ν)σ31ν(σ11+σ22+σ33)(0)Eε12=(1+ν)σ12ν(σ11+σ22+σ33)(0)

We know that σ11+σ22+σ33=σkk. Also a quantity that is 1 when i=j and 0 when ij can be represented by the Kronecker δ. Therefore, we can write the above equations as

Eεij=(1+ν)σijνσkkδij

or,

εij=(1+ν)EσijνEσkkδij

Template:Subpage navbar