Elasticity/Constitutive example 5

From testwiki
Jump to navigation Jump to search

Example 5

Given:

An isotropic material with Young's modulus E and Poisson's ration ν.

Find:

The compliance matrix of the material in terms of the Young's modulus and Poisson's ratio.

Solution

The strain is related to the stress via the compliance matrix by the equation

[ε1ε2ε3ε4ε5ε6]=[S11S12S13S14S15S16S21S22S23S24S25S26S31S32S33S34S35S36S41S42S43S44S45S46S51S52S53S54S55S56S61S62S63S64S65S66][σ1σ2σ3σ4σ5σ6]

For an isotropic material

εij=1E[(1+ν)σijνσkkδij]

Therefore,

ε11=1E[σ11νσ22νσ33]ε22=1E[σ22νσ11νσ33]ε33=1E[σ33νσ11νσ22]ε23=1E[(1+ν)σ23]ε31=1E[(1+ν)σ31]ε12=1E[(1+ν)σ12]

In engineering notation,

ε1=1E[σ1νσ2νσ3]ε2=1E[σ2νσ1νσ3]ε3=1E[σ3νσ1νσ2]ε4=1E[2(1+ν)σ4]ε5=1E[2(1+ν)σ5]ε6=1E[2(1+ν)σ6]

Converting into matrix notation,

[ε1ε2ε3ε4ε5ε6]=1E[1νν000ν1ν000νν10000002(1+ν)0000002(1+ν)0000002(1+ν)][σ1σ2σ3σ4σ5σ6]

We may also write the above equation as

[ε1ε2ε3ε4ε5ε6]=[1/Eν/Eν/E000ν/E1/Eν/E000ν/Eν/E1/E0000001/μ0000001/μ0000001/μ][σ1σ2σ3σ4σ5σ6]

where μ is the shear modulus.

Template:Subpage navbar