Elasticity/Energy methods example 4

From testwiki
Jump to navigation Jump to search

Example 4 : Bending of a cantilevered beam

Bending of a cantilevered beam

Application of the Principle of Virtual Work

The virtual work done by the external applied forces in moving through the virtual displacement δw(x) is given by

δWext=0Lqδwdx+Pδw(L)

The work done by the internal forces are,

δWint=δUdV=0L𝒮δ(12σijεij)dAdx=0L𝒮σijδεijdAdx

From beam theory, the displacement field at a point in the beam is given by

u=zdwdx;v=0;w=w(x)

The strains are, neglecting Poisson effects,

εxx=ux=zd2wdx2;εyy=0;εzz=0

and the corresponding stresses are

σxx=Eεxx=Ezd2wdx2;σyy=0;σzz=0

If we also neglect the shear strains and stresses, we get

δWint==0L𝒮σxxδεxxdAdx=0L𝒮EεxxδεxxdAdx=0LEd2wdx2d2(δw)dx2(𝒮z2dA)dx=0LEId2wdx2d2(δw)dx2dx

Therefore, from the principle of virtual work,

δW=0L(EId2wdx2d2(δw)dx2+qδw)dx+Pδw(L)=0

Integrating by parts and after some manipulation, we get,

0=0L[d2dx2(EId2wdx2)+q+Pδ(Lx)]δwdx+[(EId2wdx2)δ(dwdx)+ddx(EId2wdx2)δw]|0L

where δ(Lx) is the Dirac delta function,

δ(Lx)f(x)dx=f(L)

The Euler equation for the beam is, therefore,

d2dx2(EId2wdx2)+q+Pδ(Lx)=0

and the boundary conditions are

EId2wdx2(L)=0ddx(EId2wdx2)|x=L=0


Application of the Hellinger-Prange-Reissner variational principle

The governing equations of the cantilever beam can be written as

Kinematics

κ=d2wdx2;w(0)=0;dwdx|x=0=0

Constitutive Equation

M=EIκ

Equilibrium (kinetics)

d2Mdx2+q+Pδ(Lx)=0;M(L)=0;dMdx|x=L=0

Recall that the Hellinger-Prange-Reissner functional is given by

[s]=Uc(σ)σ:εdV𝐟𝐮dV+u𝐭(𝐮𝐮^)dA+t𝐭^𝐮dA

If we apply the strain-displacement constraints using the Lagrange multipliers λ and the displacement boundary conditions using the Lagrange multipliers μ, we get a modified functional

¯[𝐮,ε,λ,μ]=[U(ε)+λ:[12(𝐮𝐮T)ε]𝐟𝐮]dVuμ(𝐮𝐮^)dAt𝐭^𝐮dA

For the cantilevered beam, the above functional becomes

¯[w,κ,λ,μ1,μ2]=0L[EI2κ2+(d2wdx2κ)λ+[q+Pδ(Lx)]w]dxM(L)dwdx(L)dMdx(L)w(L)+μ1[w(0)0]+μ2[dwdx(0)0]

Taking the first variation of the functional, we can easily derive the Euler equations and the associated BCs.

δκ:EIκλ=0δw:d2λdx2+q+Pδ(Lx)=0δλ:d2wdx2κ=0

and

ddx(δw):λ(0)=μ2,λ(L)=M(L)δw:dλdx(0)=μ1,dλdx(L)=dMdx(L)δμ1:w(0)=0δμ1:dwdx(0)=0

The same process can be used to derive Euler equations using the Hu-Washizu variational principle.

Template:Subpage navbar