Elasticity/Equilibrium example 1

From testwiki
Jump to navigation Jump to search

Example 1

Given:

Euler's second law for the conservation of angular momentum

(1)BeijkxjnlσlkdS+BρeijkxjbkdV=ddt(BρeijkxjvkdV)

The divergence theorem

(2)BniσijdS=BσijxidV

The equilibrium equation (Cauchy's first law)

(3)σijxi+ρbj=ddt(ρvj)

Show:

(4)σij=σji

Solution

Let us first look at the first term of equation~(1) and apply the divergence theorem (2). Thus,

BeijkxjnlσlkdS=Bnl(eijkxjσlk)dS=B(eijkxjσlk)xldV=B(eijkxjxlσlk+eijkxjσlkxl)dV=B(eijkδjlσlk+eijkxjσlkxl)dV=B(eilkσlk+eijkxjσlkxl)dV

Plugging this back into equation~(1) gives

B(eilkσlk+eijkxjσlkxl)dV+BρeijkxjbkdV=ddt(BρeijkxjvkdV)

Therefore, bringing all terms to the left hand side,

(5)B[eilkσlk+eijkxj(σlkxl+ρbkddt(ρvk))]dV=0

Using the equilibrium equations~(3), equation~(5) reduces to

(6)BeilkσlkdV=0

Since this holds for any B, we have

(7)eilkσlk=0

If you work this expression out, you will see that σij=σji. Hence, the stress tensor is symmetric.

Template:Subpage navbar