Elasticity/Equilibrium example 3

From testwiki
Jump to navigation Jump to search

Example 3

Given:

If a material is incompressible (ν = 0.5), a state of hydrostatic stress (σ11=σ22=σ33) produces no strain. The corresponding stress-strain relation can be written as

σij=2μεijpδij

where p is an unknown hydrostatic pressure which will generally vary with position. Also, the condition of incompressibility requires that the dilatation

e=εkk=0.

Show:

Show that the stress components and the hydrostatic pressure p must satisfy the equations

2p=๐›;σ11+σ22=2p

where ๐› is the body force.

Solution

We have, e=εkk=ε11+ε22+ε33=0. Also,

σ11=2με11p;σ22=2με22p;σ33=2με33p.

Therefore,

σ11+σ22+σ33=2μ(ε11+ε22+ε33)3p=3p

Since σ11=σ22=σ33, the above relation gives σ11=σ22=σ33=p. Therefore,

σ11+σ22=2p

The strain-stress relations are

2με11=σ11+p;2με22=σ22+p;2με12=σ12.

Differentiating the strains so that they correspond to the compatibilityrelation is two-dimensions, we have

ε11,22=12μ(σ11,22+p,22);ε22,11=12μ(σ22,11+p,11);ε12,12=12μ(σ12,12).

In terms of the compatibility equation,

ε11,22+ε22,112ε12,12=12μ(σ11,22+σ22,112σ12,12+p,11+p,22)or,0=σ11,22+σ22,112σ12,12+2p

From the two-dimensional equilibrium equations,

σ11,1+σ12,2+b1=0;σ12,1+σ22,2+b2=0

Therefore, differentiating w.r.t x1 and x2 respectively,

σ11,11+σ12,21+b1,1=0;σ12,12+σ22,22+b2,2=0

Adding,

2σ12,12+σ11,11+σ22,22+b1,1+b2,2=0

Hence,

σ11,11+σ22,22+b1,1+b2,2=2σ12,12

Substituting back into the compatibility equation,

σ11,22+σ22,11+σ11,11+σ22,22+b1,1+b2,2+2p=0or,2σ11+2σ22+2p+๐›=0or,2(σ11+σ22+p)+๐›=0or,2(2p+p)+๐›=0or,2p+๐›=0

Hence,

2p=๐›

Template:Subpage navbar