Elasticity/Flamant solution

From testwiki
Jump to navigation Jump to search

The Flamant Solution

Elastic wedge loaded by two forces at the tip
  • This problem is also self-similar (no inherent length scale).
  • All quantities can be expressed in the separated-variable form σ=f(r)g(θ).
  • The stresses vary as (1/r) (the area of action of the force decreases with increasing r). How about a conical wedge ?

From Michell's solution, pick terms containing 1/r in the stresses. Then,

φ=C1rθsinθ+C2rlnrcosθ+C3rθcosθ+C4rlnrsinθ

Therefore, from Tables,

σrr=C1(2cosθr)+C2(cosθr)+C3(2sinθr)+C4(sinθr)σrθ=C2(sinθr)+C4(cosθr)σθθ=C2(cosθr)+C4(sinθr)

From traction BCs, C2=C4=0. From equilibrium,

F1+2αβ(C1cosθC3sinθa)acosθdθ=0F2+2αβ(C1cosθC3sinθa)asinθdθ=0

After algebra,

σrr=2C1cosθr+2C3sinθr;σrθ=0;σθθ=0

Special Case : α = -π, β = 0

C1=F1π;C2=F2π

The displacements are

u1=F1(κ+1)ln|x1|4πμ+F2(κ+1)sign(x1)8μu2=F2(κ+1)ln|x1|4πμF1(κ+1)sign(x1)8μ

where

κ=34νplane strainκ=3ν1+νplane stress

and

sign(x)={+1x>01x<0

Template:Subpage navbar