Elasticity/Sample midterm3

From testwiki
Jump to navigation Jump to search

Template:TOCright

Sample Homework Problem 3

For an isotropic material with E=100 GPa and ν=0.25, find the stress tensor and strain energy density at a point in a body if the components of the strain tensor are given by

εij=[200100010020010001000]×106.

Solution

The shear modulus (μ) is given by

μ=E2(1+ν)=1002.5=40GPa=40×106KPa

The Lamé modulus (λ) is given by

λ=Eν(1+ν)(12ν)=25(1.25)(0.5)=40GPa=40×106KPa

The stress-strain relation for isotropic materials is

σij=2μεij+λεkkδij=40(2εij+εkkδij)

Therefore, (after converting μ and λ into KPa so that the 106 term in the strain cancels out),

σ11=40(2ε11+ε11+ε22+ε33)=40[(3)(200)+200+0]=(40)(800)=32000σ22=40(2ε22+ε11+ε22+ε33)=40[(3)(200)+200+0]=(40)(800)=32000σ33=40(2ε33+ε11+ε22+ε33)=40[(3)(0)+200+200]=(40)(400)=16000σ23=40(2ε23)=(40)(200)=8000σ31=40(2ε31)=(40)(0)=0σ12=40(2ε12)=(40)(200)=8000

In 3×3 matrix form (after converting into MPa from KPa)

σij=[328083280816]MPa

The strain energy density is given by

U(ε)=12σijεij

Therefore,

U(ε)=12[σ11ε11+σ22ε22+σ33ε33+2σ23ε23+2σ31ε31+2σ12ε12]=12[(32)(200)+(32)(200)+(16)(0)+(2)(8)(100)+(2)(0)(0)+(2)(8)(100)]Pa=12[6400+6400+1600+1600]Pa=8000Pa=8KPa

The strain energy density is

U=8KPa

Template:Subpage navbar