Elasticity/Sample midterm 1

From testwiki
Jump to navigation Jump to search

Sample Midterm Problem 1

Given:

The vectors 𝐚, 𝐛, and 𝐜 are given, with respect to an orthonormal basis (𝐞^1,𝐞^2,𝐞^3), by

𝐚=5𝐞^13𝐞^2+10𝐞^3;𝐛=4𝐞^1+6𝐞^22𝐞^3;𝐜=10𝐞^1+6𝐞^2

Find:

  • (a) Evaluate d=amcmb1.
  • (b) Evaluate 𝐃=𝐚𝐜. Is 𝐃 a tensor? If not, why not? If yes, what is the order of the tensor?
  • (c) Name and define δij and eijk.
  • (d) Evaluate g=Dijδij.
  • (e) Show that δikeikm=0.
  • (f) Rotate the basis (𝐞^1,𝐞^2,𝐞^3) by 30 degrees in the counterclockwise direction around 𝐞^3 to obtain a new basis (𝐞1',𝐞2',𝐞3'). Find the components of the vector 𝐛 in the new basis (𝐞1',𝐞2',𝐞3').
  • (g) Find the component D12 of 𝐃 in the new basis (𝐞1',𝐞2',𝐞3').

Solution

Part (a)

d=[(5)(10)+(3)(6)+(10)(0)](4)=128
d=128

Part (b)

𝐃=aicj=[(5)(10)(5)(6)(5)(0)(3)(10)(3)(6)(3)(0)(10)(10)(10)(6)(10)(0)]
𝐃=[5030030180100600]
𝐃is a second-order tensor.

Part (c)

δij=Kronecker delta
eijk=Permutation symbol
δij={1ifi=j0otherwise
eijk={1ifijk=123,231,3121ifijk=321,213,1320otherwise

Part (d)

g=Dkk=D11+D22+D33=5018+0=32
g=32

Part (e)

δikeikm=ejjm=0

Because jjm cannot be an even or odd permutation of 1,2,3.

Part (f)

The basis transformation rule for vectors is

vi'=lijvj

where

lij=𝐞^i'𝐞^j=cos(𝐞^i',𝐞^j)

Therefore,

[L]=[cos(30o)cos(90o30o)cos(90o)cos(90o+30o)cos(30o)cos(90o)cos(90o)cos(90o)cos(0o)]=[cos(30o)sin(30o)cos(90o)sin(30o)cos(30o)cos(90o)cos(90o)cos(90o)cos(0o)]=[3/21/201/23/20001]

Hence,

b1'=l11b1+l12b2+l13b3=(3/2)(4)+(1/2)(6)+(0)(2)=23+3=6.46b2'=l21b1+l22b2+l23b3=(1/2)(4)+(3/2)(6)+(0)(2)=2+33=3.2b3'=l31b1+l32b2+l33b3=(0)(4)+(0)(6)+(1)(2)=2

Thus,

𝐛'=6.46𝐞1'+3.2𝐞2'2𝐞3'

Part (g)

The basis transformation rule for second-order tensors is

Dij'=lipljqDpq

Therefore,

D12'=l11l21D11+l12l21D21+l13l21D31+l11l22D12+l12l22D22+l13l22D32+l11l23D13+l12l23D23+l13l23D33=l11(l21D11+l22D12+l23D13)+l12(l21D21+l22D22+l23D23)+l13(l21D31+l22D32+l23D33)=(32)[(12)(50)+(32)(30)+(0)(0)]+(12)[(12)(30)+(32)(18)+(0)(0)]+(0)[(12)(100)+(32)(60)+(0)(0)]=(32)[25+153]+(12)[1593]=2532+452+152932=173+30
D12'=173+30=0.55


Template:Subpage navbar