Elasticity/Stress example 2

From testwiki
Jump to navigation Jump to search

Example 2

Given: A homogeneous stress field with components in the basis (𝐞1,𝐞2,𝐞3) given by

[σ]=[311102120](MPa)

Find:

  1. The traction (𝐭) acting on a surface with unit normal 𝐧^=(𝐞^2+𝐞^3)/2.
  2. The normal traction (𝐭n) acting on a surface with unit normal 𝐧^=(𝐞^2+𝐞^3)/2.
  3. The projected shear traction (𝐭s) acting on a surface with unit normal 𝐧^=(𝐞^2+𝐞^3)/2.
  4. The principal stresses.
  5. The principal directions of stress.

Solution

Here's how you can solve this problem using Maple.
with(linalg):

sigma := linalg[matrix](3,3,[3,1,1,1,0,2,1,2,0]);

σ:=[311102120]


e2 := linalg[matrix](3,1,[0,1,0]);

𝑒2:=[010]


e3 := linalg[matrix](3,1,[0,0,1]);

𝑒3:=[001]


n := evalm((e2+e3)/sqrt(2));

n:=[022[2ex]22]


sigmaT := transpose(sigma);

π‘ π‘–π‘”π‘šπ‘Žπ‘‡:=[311102120]


t := evalm(sigmaT&*n);

𝐭:=[222]Solution for Part 1


tT := transpose(t);

𝑑𝑇:=[222]


N := evalm(tT&*n);

N:=[2]Solution for Part 2


tdott := evalm(tT&*t);

π‘‘π‘‘π‘œπ‘‘π‘‘:=[6]


S := sqrt(tdott[1,1] - N[1,1]^2);

S:=2Solution for Part 3


sigPrin := eigenvals(sigma);

π‘ π‘–π‘”π‘ƒπ‘Ÿπ‘–π‘›:=1,2,4Solution for Part 4


dirPrin := eigenvects(sigma);

π‘‘π‘–π‘Ÿπ‘ƒπ‘Ÿπ‘–π‘›:=[1,1,{[1,1,1]}],[2,1,{[0,1,1]}],[4,1,{[2,1,1]}]


dirPrin[1];

[1,1,{[1,1,1]}]Solution for Part 5


dirPrin[2];

[2,1,{[0,1,1]}]Solution for Part 5


dirPrin[3];

[4,1,{[2,1,1]}]Solution for Part 5

Template:Subpage navbar