Elasticity/Williams asymptotic solution

From testwiki
Jump to navigation Jump to search

Williams' Asymptotic Solution

Ref: M.L. Williams, ASME J. Appl. Mech., v. 19 (1952), 526-528.

File:Williams solution mode I.png
The Williams' solution
  • Stress concentration at the notch.
  • Singularity at the sharp corner, i.e, σij.
  • William's solution involves defining the origin at the corner and expanding the stress field as an asymptotic series in powers of r.
  • If the stresses (and strains) vary with rα as we approach the point r=0, the strain energy is given by
(4)U=1202π0rσijεijrdrdθ=C0rr2a+1dr

This integral is bounded only if a>1. Hence, singular stress fields are acceptable only if the exponent on the stress components exceeds 1.

Stresses near the notch corner

  • Use a separated-variable series as in equation (3).
  • Each of the terms satisfies the traction-free BCs on the surface of the notch.
  • Relax the requirement that n in equation (3) is an integer. Let n=λ1.
(5)φ=rλ+1[a1cos{(λ+1)θ}+a2cos(λ1)θ+a3sin{(λ+1)θ}+a4sin(λ1)θ]

The stresses are

σrr=rλ1[a1λ(λ+1)cos{(λ+1)θ}a2λ(λ+1)cos{(λ1)θ}a3λ(λ+1)sin{(λ+1)θ}a4λ(λ+1)sin{(λ1)θ}](6)σrθ=rλ1[+a1λ(λ+1)sin{(λ+1)θ}+a2λ(λ1)sin{(λ1)θ}a3λ(λ+1)cos{(λ+1)θ}a4λ(λ1)cos{(λ1)θ}](7)σθθ=rλ1[+a1λ(λ+1)cos{(λ+1)θ}+a2λ(λ+1)cos{(λ1)θ}+a3λ(λ+1)sin{(λ+1)θ}+a4λ(λ+1)sin{(λ1)θ}](8)

The BCs are σrθ=σθθ=0 at θ=α.Hence,

0=rλ1λ[+a1(λ+1)sin{(λ+1)α}+a2(λ1)sin{(λ1)α}a3(λ+1)cos{(λ+1)α}a4(λ1)cos{(λ1)α}](9)0=rλ1λ[a1(λ+1)sin{(λ+1)α}a2(λ1)sin{(λ1)α}a3(λ+1)cos{(λ+1)α}a4(λ1)cos{(λ1)α}](10)

The BCs are σrθ=σθθ=0 at θ=α.Hence,

0=rλ1λ[+a1(λ+1)cos{(λ+1)α}+a2(λ+1)cos{(λ1)α}+a3(λ+1)sin{(λ+1)α}+a4(λ+1)sin{(λ1)α}](11)0=rλ1λ[+a1(λ+1)cos{(λ+1)α}+a2(λ+1)cos{(λ1)α}a3(λ+1)sin{(λ+1)α}a4(λ+1)sin{(λ1)α}](12)

The above equations will have non-trivial solutions only for certain eigenvalues of λ, one of which is λ=0. Using the symmetries of the equations, we can partition the coefficient matrix.

Eigenvalues of λ

Adding equations (9) and (10),

(13)a3(λ+1)cos{(λ+1)α}+a4(λ1)cos{(λ1)α}=0

Subtracting equation (10) from (9),

(14)a1(λ+1)sin{(λ+1)α}+a2(λ1)sin{(λ1)α}=0

Adding equations (11) and (12),

(15)a1(λ+1)cos{(λ+1)α}+a2(λ+1)cos{(λ1)α}=0

Subtracting equation (12) from (11),

(16)a3(λ+1)sin{(λ+1)α}+a4(λ+1)sin{(λ1)α}=0

Therefore, the two independent sets of equations are

(17)[(λ+1)sin{(λ+1)α}(λ1)sin{(λ1)α}(λ+1)cos{(λ+1)α}(λ+1)cos{(λ1)α}][a1a2]=[00]

and

(18)[(λ+1)cos{(λ+1)α}(λ1)cos{(λ1)α}(λ+1)sin{(λ+1)α}(λ+1)sin{(λ1)α}][a3a4]=[00]

Equations (17) have a non-trivial solution only if

(19)λsin(2α)+sin(2λα)=0

Equations (18) have a non-trivial solution only if

(20)λsin(2α)sin(2λα)=0
  • From equation (4), acceptable singular stress fields must have λ>0.Hence, λ=0 is not acceptable.
  • The term with the smallest eigenvalue of λ dominates the solution. Hence, this eigenvalue is what we seek.
  • λ=1 leads to φ=a4sin(0). Unacceptable.
  • We can find the eigenvalues for general wedge angles using graphical methods.

Special case : α = π = 180°

In this case, the wedge becomes a crack.In this case,

(21)λ=12,1,32,

The lowest eigenvalue is 1/2. If we use, this value in equation (17), then the two equations will not be linearly independent and we can express them as one equation with the substitutions

(22)a1=A2sin(α2);a2=3A2sin(3α2)

where A is a constant. The singular stress field at the crack tip is then

σrr=KI2πr[54cos(θ2)14cos(3θ2)](23)σrθ=KI2πr[34cos(θ2)+14cos(3θ2)](24)σθθ=KI2πr[14sin(θ2)+14sin(3θ2)](25)

where, KI is the { Mode I Stress Intensity Factor.}

(26)KI=3Aπ2

If we use equations (18) we can get the stresses due to a mode II loading.

σrr=KII2πr[54sin(θ2)+34sin(3θ2)](27)σrθ=KII2πr[34sin(θ2)34sin(3θ2)](28)σθθ=KII2πr[14cos(θ2)+34sin(3θ2)](29)

Template:Subpage navbar