Heat equation/Solution to the 2-D Heat Equation in Cylindrical Coordinates

From testwiki
Jump to navigation Jump to search

Definition

We start by changing the Laplacian operator in the 2-D heat equation from rectangular to cylindrical coordinates by the following definition:

D:=(0,a)×(0,b).

By changing the coordinate system, we arrive at the following nonhomogeneous PDE for the heat equation:

ut=k[1r(ur+rurr)+1r2uθθ]+h(r,θ,t), where (r,θ)D,t(0,).

We choose for the example the Robin boundary conditions and initial conditions as follows:

{|u(0,θ,t)|<α1u(a,θ,t)+β1ur(a,θ,t)=0α2u(r,0,t)β2uθ(r,0,t)=0α3u(r,b,t)+β3uθ(r,b,t)=0u(r,θ,0)=f(r,θ)

Solution

Step 1: Solve Associated Homogeneous Equation

Separate Variables

u(r,θ,t)=R(r)Θ(θ)T(t)

RΘT=k[1r(RΘT+rRΘT)+1r2RΘT]

TkT=1r(RR+rRR)+1r2ΘΘ

This means that a separation constant can be found that both sides will equal. Let's define it to be λ2. This yields:

T+kλ2T=0

and multiplying the other side by r2 yields:

r(RR+rRR)+λ2r2=ΘΘ

After defining another separation constant μ2, it yields:

Θ+μ2Θ=0

Multiplying the other side by R yields:

r2R+rR+(λ2r2μ2)R=0

We now have separate differential equations for each variable.

Translate Boundary Conditions

|R(0)Θ(θ)T(t)|<|R(0)|<

α1R(a)Θ(θ)T(t)+β1R(a)Θ(θ)T(t)=0α1R(a)+β1R(a)=0

α2R(r)Θ(0)T(t)+β2R(r)Θ(0)T(t)=0α2Θ(0)β2Θ(0)=0

α3R(r)Θ(b)T(t)+β2R(r)Θ(b)T(t)=0α3Θ(b)+β3Θ(b)=0

Solve SLPs

Θ+μ2Θ=0α2Θ(0)β2Θ(0)=0α3Θ(b)+β3Θ(b)=0}Eigenvalues μm are solutions to (α2α3β2β3μ2)sin(μB)+(α2β3+α3β2)μcos(μB)=0Θm(θ)=β2μmcos(μmθ)+α2sin(μmθ),m=0,1,2,

The SLP for R is a singular Bessel type, whose eigenvalues λmn depends on μm and are non-negative solutions to the following equation:

(α1a+β1μm)Jμm(λa)β1aλJμm+1(λa)=0

and the eigenfunction is:

Rmn(r)=Jμm(λmnr),m,n=0,1,2,

where Jν(x) is the Bessel function of the first kind of order ν.

Solve Time Equation

T+kλmn2T=0

Tmn(t)=Cmnekλmn2t

Step 2: Satisfy Initial Condition

Let's define the solution as an infinite sum:

u(r,θ,t):=m,n=0Tmn(t)Rmn(r)Θm(θ).

With the initial condition:

f(r,θ)=u(r,θ,0)=m,n=0Tmn(0)Rmn(r)Θm(θ)=m,n=0CmnRmn(r)Θm(θ)

where Cmn=0b0af(r,θ)Rmn(r)Θm(θ)rdrdθ0aRmn2(r)rdr0bΘm2(θ)dθ.

The weight function in the inner product w(r)=r in integrals involving the Bessel functions. The Bessel functions Rm are orthogonal relative to the "weighted" scalar product <f,g>w:=0af(r)g(r)rdr.

Step 3: Solve Non-homogeneous Equation

Solving the non-homogeneous equation involves defining the following functions:

u(r,θ,t):=m,n=0Tmn(t)Rmn(r)Θm(θ)

h(r,θ,t):=m,n=0Hmn(t)Rmn(r)Θm(θ),Hmn(t)=0b0ah(r,θ,t)Rmn(r)Θm(θ)rdrdθ0aRmn2(r)rdr0bΘm2(θ)dθ

Substitute the new definitions into the non-homogeneous equations:

Tmn(t)Rmn(r)Θm(θ)=k[1r(Tmn(t)Rmn(r)Θm(θ)+rTmn(t)Rmn(r)Θm(θ))+1r2Tmn(t)Rmn(r)Θm(θ)]+Hmn(t)Rmn(r)Θm(θ)

We will use the following substitutions in our equation above:

{Θm(θ)=μm2Θm(θ)rRmn(r)+Rmn(r)=1r(μm2λmn2r2)Rmn(r)

We can eliminate the derivatives by substituting:

Tmn(t)Rmn(r)Θm(θ)={Tmn(t)k[1r(Rmn(r)+rRmn(r))1r(μm2λmn2r2)Rmn(r)Θm(θ)+1r2Rmn(r)Θm(θ)μm2Θm(θ)]}+Hmn(t)Rmn(r)Θm(θ)={Tmn(t)k[1r2(μm2λmn2r2)1r2μm2]}Rmn(r)Θm(θ)+Hmn(t)Rmn(r)Θm(θ)=[(kλmn2)Tmn(t)+Hmn(t)]Rmn(r)Θm(θ)

From the linear independence of RmnΘm, it follows that:

Tmn(t)+kλmn2Tmn(t)=Hmn(t).

This first-order ODE can be solved with the following integration factor:

μ(t)=ekλmn2t

Thus, the equation becomes:

[ekλmn2tTmn(t)]=ekλmn2tHmn(t)

Tmn(t)=ekλmn2t0tekλmn2tHmn(s)ds+Cmnekλmn2t

We satisfy the initial condition:

u(r,θ,0)=f(r,θ)=m,n=0Tmn(0)Rmn(r)Θm(θ)=m,n=0CmnRmn(r)Θm(θ),Cmn=0b0af(r,θ)Rmn(r)Θm(θ)rdrdθ0aRmn2(r)rdr0bΘm2(θ)dθ

Template:CourseCat