Heat equation/Solution to the 3-D Heat Equation in Cylindrical Coordinates

From testwiki
Jump to navigation Jump to search

Definition

We are adding to the equation found in the 2-D heat equation in cylindrical coordinates, starting with the following definition:

D:=(0,a)×(0,b)×(0,L).

By changing the coordinate system, we arrive at the following nonhomogeneous PDE for the heat equation:

ut=k[1r(ur+rurr)+1r2uθθ+uzz]+h(r,θ,z,t), where (r,θ,z)D,t(0,).

We choose for the example the Robin boundary conditions and initial conditions as follows:

{|u(0,θ,z,t)|<α1u(a,θ,z,t)+β1ur(a,θ,z,t)=0α2u(r,0,z,t)β2uθ(r,0,z,t)=0α3u(r,b,z,t)+β3uθ(r,b,z,t)=0α4u(r,θ,0,t)β4uz(r,θ,0,t)=0α5u(r,θ,L,t)+β5uz(r,θ,L,t)=0u(r,θ,z,0)=f(r,θ,z)

Solution

All of the boundary conditions are homogeneous, so we don't have to partition the solution into a "steady-state" portion and a "variable" portion. Otherwise, that would be the way to solve this problem.

Step 1: Solve Associated Homogeneous Equation

Separate Variables

u(r,θ,z,t)=R(r)Θ(θ)Z(z)T(t)

RΘZT=k(RΘZT+1rRΘZT+1r2RΘZT+RΘZT)

TkT=RR+1rRR+1r2ΘΘ+ZZ

There is a separation constant γ2 that both sides of the equation are equivalent to. This yields:

TkT=γ2T+kγ2T=0

RR+1rRR+1r2ΘΘ+γ2=ZZ=μ2

The second equation yields the equations:

Z+μ2Z=0

RR+1rRR+γ2μ2=1r2ΘΘ

r2RR+rRR+(γ2μ2)r2=ΘΘ=ρ2

This yields the following equations:

Θ+ρ2Θ=0

r2R+rR+[(γ2μ2)r2ρ2]R=0

Translate Boundary Conditions

Just like in the 2-D heat equation, the boundary conditions yield:

{|R(0)|<α1R(a)+β1R(a)=0α2Θ(0)β2Θ(0)=0α3Θ(b)+β3Θ(b)=0α4Z(0)β4Z(0)=0α5Z(L)+β5Z(L)=0

Solve SLPs

Z+μ2Z=0α4Z(0)β4Z(0)=0α5Z(L)+β5Z(L)=0}Eigenvalues μk: solutions to equation (α4α5β4β5μ2)sin(μL)+(α4β5+α5β4)μcos(μL)=0Zk(z)=β4μkcos(μkz)+α4sin(μkz),k=0,1,2,

Θ+ρ2Θ=0α2Θ(0)β2Θ(0)=0α3Θ(b)+β3Θ(b)=0}Eigenvalues ρm: solutions to equation (α2α3β2β3ρ2)sin(ρb)+(α2β3+α3β2)ρcos(ρb)=0Θm(θ)=β2ρmcos(ρmθ)+α2sin(ρmθ),m=0,1,2,

r2R+rR+[(γ2μ2)r2ρ2]R=0|R(0)|<α1R(a)+β1R(a)=0}Substitute λ2=γ2μk2 and ν2=ρm,k,m=0,1,2,Eigenvals λkmn: solns to eqn (α1λa+β1ρm)Jρm(λa)β1aλJρm+1(λa)=0Rkmn(r)=Jρm(λkmnr),k,m,n=0,1,2,γkmn2=λkmn2+μk2

Solve Time Equation

T+kγkmn2T=0

The solution to the equation is:

Tkmn(t)=Ckmnek(λkmn2+μk2)t,k,m,n=0,1,2,

Step 2: Satisfy Initial Condition

Define:

u(r,θ,z,t)=k,m,n=0Tkmn(t)Rkmn(r)Θm(θ)Zk(z)

Applying the initial condition:

u(r,θ,z,0)=f(r,θ,z)=k,m,n=0Tkmn(0)Rkmn(r)Θm(θ)Zk(z)=k,m,n=0CkmnRkmn(r)Θm(θ)Zk(z)

This is the orthogonal expansion of f in terms of RkmnΘm(θ)Zk. Hence,

Ckmn=0L0b0af(r,θ,z)Rkmn(r)Θm(θ)Zk(z)rdrdθdz0aRkmn2(r)rdr0bΘm2(θ)dθ0LZk2(z)dz,k,m,n=0,1,2,

Step 3: Solve the Non-homogeneous Equation

Let:

u(r,θ,z,t)=k,m,n=0Tkmn(t)Rkmn(r)Θm(θ)Zk(z)

h(r,θ,z,t)=k,m,n=0Hkmn(t)Rkmn(r)Θm(θ)Zk(z),Hkmn(t)=0L0b0ah(r,θ,z,t)Rkmn(r)Θm(θ)Zk(z)rdrdθdz0aRkmn2(r)rdr0bΘm2(θ)dθ0LZk2(z)dz,k,m,n=0,1,2,

Substitute the expansions for u and h into the non-homogeneous equation:

TkmnRkmnΘmZk=k{Tkmn[(Rkmn+1rRkmn)[(λkmn2μk2)1r2ρm2]RkmnΘmZk+1r2RkmnΘmρm2ΘmZk+RkmnΘmZkμk2Zk]}+HkmnRkmnΘmZk

Tkmn[RkmnΘmZk]=[(kγkmn2)Tkmn+Hkmn][RkmnΘmZk]

From the linear independence of RkmnΘmZk:

Tkmn(t)=kγkmn2Tkmn(t)=Hkmn(t),k,m,n=0,1,2,

Tkmn(t)=ekγkmn2t0tekγkmn2sHkmn(s)ds+Ckmnekγkmn2t

The undetermined coefficient satisfies the initial condition:

Ckmn=0L0b0af(r,θ,z)Rkmn(r)Θm(θ)Zk(z)rdrdθdz0aRkmn2(r)rdr0bΘm2(θ)dθ0LZk2(z)dz,k,m,n=0,1,2,

Template:CourseCat