History of Topics in Special Relativity/Four-force (electromagnetism)

From testwiki
Jump to navigation Jump to search

{{../4-Vectors (header)}}

Overview

The electromagnetic w:four-force or covariant w:Lorentz force Kμ can be expressed as

(a) the rate of change in the w:four-momentum Pμ=mUμ of a particle with respect to the particle's w:proper time τ,
(b) function of three-force ๐Ÿ
(c) assuming constant mass as the product of invariant mass m and four-acceleration Aμ
(d) using the Lorentz force per unit charge ๐Ÿ=q{๐„+๐ฏ×๐}
(e) the product of the electromagnetic tensor Fαβ with the four-velocity Uμ and charge q
(f) by integrating the four-force density Dμ with respect to rest unit volume V0=Vγ

The corresponding four-force density Dμ is defined as

(a1) the rate of change of four-momentum density Mμ=μ0Uμ with rest mass density μ0=μ/γ and four-velocity Uμ,
(b1) function of three-force density ๐
(c1) assuming constant mass the product of rest mass density μ0 and four-acceleration Aμ
(d1) using the Lorentz force density ๐=ρ{๐„+๐ฏ×๐}=ρ๐„+๐‰×๐ with ρ as charge density,
(e1) as the product of electromagnetic tensor Fαβ with four-current Jμ or with four-velocity Uμ using rest charge density ρ0=ρ/γ,
(f1) as the negative four-divergence of the electromagnetic energy-momentum tensor Tαβ (compare with History of Topics in Special Relativity/Stress-energy tensor (electromagnetic)):

Kμ=dPμdτ=γ(1c๐Ÿ๐ฏ, ๐Ÿ)=mAμ=γq(1c๐ฏ๐„, ๐„+๐ฏ×๐)=qFαβUβ=DμdV0(a)(b)(c)(d)(e)(f)Dμ=dMμdτ=(1c๐๐ฏ, ๐)=μ0Aμ=ρ(1c๐ฏ๐„, ๐„+๐ฏ×๐)=FαβJβ=ρ0FαβUβ=αTαβ(a1)(b1)(c1)(d1)(e1)(f1)(γ=11v2c2, ๐Ÿ=๐dV)

Historical notation

Poincarรฉ (1905/6)

w:Henri Poincarรฉ (July 1905, published January 1906) defined the Lorentz force and its Lorentz transformation:[R 1]

X=ρf+ρ(ηγζβ)X=ρf+ρ(ηγζβ){X=k(X+ϵT),T=k(T+ϵX),Y=Y,Z=Z; with T=ΣXξ and k=11ϵ2.

in which (X,Y,Z,T) represent the components of four-force density (b1, d1) because

ϵ=vc, (X, Y, Z)=ρ{๐„+๐ฏ×๐}=๐, T=ΣXξ=๐๐ฏ=๐ฏ๐„.

Additionally, he explicitly obtained the four-force per unit charge by setting X1X=Y1Y=Z1Z=T1T=1ρ:[R 2]

(k0X1,k0Y1,k0Z1,k0T1) with T1=ΣX1ξ and k0=11ϵ2

equivalent to (b, d) and obtained its Lorentz transformation by multiplying the transformation of (X,Y,Z,T) by

ρρ=1k(1+ξϵ)=δtδt.

Minkowski (1907/8)

w:Hermann Minkowski employed matrix representation of four-vectors and six-vectors (i.e. antisymmetric second rank tensors) and their product from the outset. In a lecture held in November 1907, published 1915, Minkowski defined the four-force density X,Y,Z,iA as the product of the electromagnetic tensor and the four-current with ϱ as charge density and ๐”ณ as velocity:[R 3]

X,Y,Z,iAXj=ϱ1ψj1+ϱ2ψj2+ϱ3ψj3+ϱ4ψj4A=X๐”ณx+Y๐”ณy+Z๐”ณz{ψ23, ψ31, ψ12โ„Œx,โ„Œy,โ„Œzψ14, ψ24, ψ34i๐”ˆx,i๐”ˆy,i๐”ˆzψjj=0}

equivalent to (b1, d1, e1) because ϵ=vc, (X,Y,Z)=๐, A=๐๐ฏ=๐ฏ๐„.

In another lecture from December 1907, he used the symbols ๐”ข,๐”ช (i.e. ๐„,๐) and ๐”ˆ,๐” (i.e. ๐ƒ,๐‡) which he represented in the form of โ€œvectors of second kindโ€, i.e. the electromagnetic tensor f and its dual f*, from which he derived the electric rest force Φ and magnetric rest force Ψ as the product with four-velocity w, which in turn can be used to express F and f and four-conductivity:[R 4]

Φ=wF(Φ1,Φ2,Φ3)=๐”ˆ+[๐”ด๐”]1๐”ด2, Φ4=i(๐”ด๐”ˆ)1๐”ด2Ψ=iwf*,Φ1=w2F12+w3F13+w4F14,Φ2=w1F21+w3F23+w4F24,Φ3=w1F31+w2F32+w4F34,Φ4=w1F41+w2F42+w3F43.|Ψ1=i(w2f34+w3f42+w4f23),Ψ2=i(w1f43+w3f14+w4f31),Ψ3=i(w1f24+w2f41+w4f12),Ψ4=i(w1f32+w2f13+w3f21).wF=Φ,wF*=iμΨ,wf=εΦ,wf*=iΨF=[w,Φ]+iμ[w,Ψ]*,f=ε[w,Φ]+i[w,Ψ]*,s+(ws)w=σwF.

which becomes the covariant Lorentz force (d,e) when multiplied with the charge. He gave the general expression of four-force density as

K+(wK)wK=lor S=sF+NK1=Xxx+Xyy+XzzXtt=ϱ๐”ˆx+๐”ฐy๐”z๐”ฐz๐”y12ΦΦεx12ΨΨμx+εμ11๐”ด2(๐”š๐”ดx)K2=Yxx+Yyy+YzzYtt=ϱ๐”ˆy+๐”ฐz๐”x๐”ฐx๐”z12ΦΦεy12ΨΨμy+εμ11๐”ด2(๐”š๐”ดy)K3=Zxx+Zyy+ZzzZtt=ϱ๐”ˆz+๐”ฐx๐”y๐”ฐy๐”x12ΦΦεz12ΨΨμz+εμ11๐”ด2(๐”š๐”ดz)1iK4=TxxTyyTzzTtt=๐”ฐx๐”ˆx+๐”ฐy๐”ˆy+๐”ฐz๐”ˆz+12ΦΦεt+12ΨΨμtεμ11๐”ด2(๐”š๐”ดt)[lor =|x1, x2, x3, x4|]

equivalent to (f).

In his lecture โ€œspace and timeโ€ (1908, published 1909), Minkowski defined the โ€œmoving force vectorโ€ as[R 5]

tห™X, tห™Y, tห™Z, tห™TT=1c2(xห™tห™X, yห™tห™Y, zห™tห™Z)

equivalent to (b) because xห™, yห™, zห™, tห™ is the four-velocity γ[๐ฎ,c] and ๐Ÿ=[X,Y,Z].

Born (1909)

w:Max Born (1909) summarized Minkowski's work using index notation, defining the equations of motion in terms of rest mass density μ and rest charge density ϱ0[R 6]

ciμ2xαξ42=ϱ0cβ=14fαβxβξ4μ2xτ2=ϱ0{๐”ˆxtτ+1c(yτ๐”zzτ๐”y)}μ2yτ2=ϱ0{๐”ˆytτ+1c(zτ๐”xxτ๐”z)}μ2zτ2=ϱ0{๐”ˆztτ+1c(xτ๐”yyτ๐”z)}μ2tτ2=1c2ϱ0{๐”ˆxxτ+๐”ˆyyτ+๐”ˆzzτ}

equivalent to (c1, d1, e1).

Frank (1909)

w:Philipp Frank (1909) discussed โ€œelectromagnetic mechanicsโ€ by defining four-force (X,Y,Z,T) as follows:[R 7]

mddσdtdσ=T, md2xdσ2=X, d2ydσ2=Y, d2zdσ2=ZT=mddσdtdσ=m1(1w2)2(wxdwxdt+wydwydt+wzdwzdt)d2xdσ2=11w2dwxdt+wx(1w2)2(wxdwxdt+wydwydt+wzdwzdt)etc.

corresponding to (b, c).

Abraham (1909/10)

While Minkowski used the four-force density as K+(Kw)w with K=lor S, w:Max Abraham (1909) directly used K as four-force density, and expressed it in terms of โ€œmomentum equationsโ€ and an โ€œenergy equationโ€ using momentum density ๐”ค, energy density ψ, Poynting vector ๐”–, Joule heat Q[R 8]

๐”Žx=Xxx+Xyy+Xzz๐”คxt๐”Žx=Xxx+Xyy+XzzXtl๐”Žy=Yxx+Yyy+Yzz๐”คyt๐”Žy=Yxx+Yyy+YzzYtl๐”Žz=Zxx+Zyy+Zzz๐”คzt๐”Žz=Zxx+Zyy+ZzzZtl๐”ด๐”Ž+Q=div๐”–ψt๐”Žt=TxxTyyTzzTtl(div๐”–=๐”–xx+๐”–yy+๐”–zz, ๐”ค=๐”–c2)

or alternatively by introducing โ€œrelative stressesโ€ and the โ€œrelative energy fluxโ€:

๐”Žx=Xxx+Xyy+Xzz๐”คxt๐”Žy=Yxx+Yyy+Yzz๐”คyt๐”Žz=Zxx+Zyy+Zzz๐”คzt๐”ด๐”Ž+Q=div{๐”–๐”ดψ}ψt(Xx=Xx+๐”ดx๐”คxXy=Xy+๐”ดy๐”คxXz=Xz+๐”ดz๐”คxYx=Yx+๐”ดx๐”คxYy=Yy+๐”ดy๐”คxYz=Yz+๐”ดz๐”คxZx=Zx+๐”ดx๐”คxZy=Zy+๐”ดy๐”คxZz=Zz+๐”ดz๐”คx)

all equivalent to (f1).

In a subsequent paper (1909) he formulated these relations as follows[R 9]

๐”Žx=Xxx+Xyy+Xzz๐”คxt๐”Žx=Xxx+Xyy+Xzz+Xuu๐”Žy=Yxx+Yyy+Yzz๐”คyt๐”Žy=Yxx+Yyy+Yzz+Yuu๐”Žz=Zxx+Zyy+Zzz๐”คzt๐”Žz=Zxx+Zyy+Zzz+ZuuQ+(๐”ด๐”Ž)=๐”–xx๐”–yy๐”–zzψt๐”Žu=Uxx+Uyy+Uzz+Uuu(u=ict)

In addition, Abraham gave arguments in favor of his choice to use K=lor S directly as four-force density: He argued that Minkowski's definition of force as the product of constant rest mass with four-acceleration together with a complementary force is disadvantageous at non-adiabatic motion, because mass-energy equivalence according to which mass depends on its energy content would suggest a variable rest mass m0, and showed that m0 is compatible with the general definition of force density ๐”Ž over volume dv as the rate of momentum change without the need of complementary components[R 10]

ddt{m0c๐”ฎ1๐”ฎ2}=๐”Ždv.

As he showed in 1910, this implies that the equations of motion in terms of four-force density ๐”Ž and rest mass density ν and four-velocity assume the form:[R 11]

ddτ(νdxdτ)=๐”Žxddτ(νdydτ)=๐”Žyddτ(νdzdτ)=๐”Žzddτ(νdudτ)=๐”Žu (u=ict)

This is equivalent to (a1) defining four-force density as the rate of change of four-momentum density.

Bateman (1909/10)

The first discussion in an English language paper of four-force in terms of integral forms (even though in the broader context of w:spherical wave transformations), was given by w:Harry Bateman in a paper read 1909 and published 1910, who defined the following invariants (with λ2=1 in relativity):[R 12]

ρλ2[(ExwzHy+wyHz)dy dz dt+(EywxHz+wzHx)dz dx dt+(EzwyHz+wxHy)dx dy dt(wxEx+wyEy+wzEz)dx dy dz],ρλ4[(Ex+wyHzwzHy)δx+(Ey+wzHxwxHz)δy+(Ez+wzHywyHx)δz(wxEx+wyEy+wzEz)δt],ρ dx dy dz dt[(Ex+wyHzwzHy)δx+(Ey+wzHxwxHz)δy+(Ez+wxHywyHx)δz(wxEx+wyEy+wzEz)δt].

equivalent to (e) because it can be seen as the product of charge, four-velocity and the electromagnetic tensor, which is the definition of the covariant Lorentz force.

Ignatowski (1910)

w:Wladimir Ignatowski (1910) formulated the four-force in terms of the Lorentz force as well as the equation of motion, and following Abraham (1909) he assumed variable rest mass in the case of non-adiabatic motion[R 13]

(๐”Ž1n๐”ณ2, n๐”ณ๐”Ž1n๐”ณ2)dm0๐”ณ1n๐”ณ2dt=๐”Ž(๐”Ž1n๐”ณ2, n๐”ณ๐”Ž1n๐”ณ2+dm0dt)๐”Ž=e๐”ˆ+[e๐”ณโ„Œ]๐”Ž=e๐”ˆ+[e๐”ณโ„Œ]m0d๐”ณ1n๐”ณ2dt=๐”Ž[n=1c2]

equivalent to (b, d). He also derived the four-force density in terms of the density of three-force or Lorentz force ๐”Ž1 by integrating three-force ๐”Ž with respect to volume:[R 14]

(๐”Ž1, n๐”Ž1๐”ณ)๐”Ž1=๐”ˆϱ+[ϱ๐”ณโ„Œ]๐”Ž'1=๐”ˆϱ+[ϱ๐”ณโ„Œ][๐”Ž dv=๐”Ž1, n=1c2]

equivalent to (b1, d1).

Sommerfeld (1910)

In an influential paper, w:Arnold Sommerfeld translated Minkowski's matrix formalism into a four-dimensional vector formalism involving four-vectors and six-vectors. He defined the four-force density as the covariant product of a six-vector denoted as โ€œfield vectorโ€ f (now known as electromagnetic tensor) and the four-current P, which he related to Lorentz force density ๐”‰:[R 15]

[Pf]๐”‰x=(Pfx)=ϱ(๐”ณxcfxx+๐”ณycfxy+๐”ณzcfxz+ifxl)=ϱ(๐”ณycโ„Œz๐”ณzcโ„Œy+๐”ˆx)๐”‰l=(Pfl)=ϱ(๐”ณxcflx+๐”ณycfly+๐”ณzcflz+ifll)=iϱc(๐”ณx๐”ˆx+๐”ณy๐”ˆy+๐”ณz๐”ˆz)๐”‰j=ϱ(๐”ˆ+1c[๐”ณโ„Œ]), ๐”‰l=iϱc(๐”ˆ๐”ณ)(j=x,y,z; l=ict)

equivalent to (b1, d1, e1).

Laue (1911-13)

In the first textbook on relativity, w:Max von Laue (1911) followed Abraham in defining the four-force density (Viererkraft) F as the product of a six-vector denoted as โ€œfield vectorโ€ ๐” (now known as electromagnetic tensor) and the four-current related to Lorentz force density ๐”‰, and alternatively as the divergence of the electromagnetic stress-energy tensor T,[R 16] which included some printing errors corrected in the 1913 edition[R 17]

F=[P๐”]=๐ž“ivT[P๐”]x=๐”‰x, [P๐”]y=๐”‰y, [P๐”]z=๐”‰z, [P๐”]l=iϱc(๐”ฎ๐”ˆ)=ic(๐”ฎ๐”‰)[๐”‰=ϱ(๐”ˆ+1c[๐”ฎโ„Œ]), ๐ž“iv=divergence six-vector, l=ict]

equivalent to (b1, d1, e1, f1).

In 1913, Laue also showed that four-force density F and three force density ๐”‰ can be used to derive the โ€œMinkowskian force vectorโ€ (i.e. four-force) K and three-force ๐”Ž per unit charge by defining the volume δV:c2q2:[R 18]

KKx=๐”Žxc2q2,Ky=๐”Žyc2q2,Kz=๐”Žzc2q2,Kl=ic(๐”ฎ๐”Ž)c2q2,d(mY)dτmdYdτ

Silberstein (1911-14)

w:Ludwik Silberstein in 1911 and published 1912, devised an alternative 4D calculus based on w:Biquaternions which, however, never gained widespread support. He defined the "force-quaternion" (i.e. four-force density) as the electrical part Pe of P, which he related to the โ€œcurrent-quaternionโ€ (i.e. four-current) C and the โ€œelectromagnetic bivectorโ€ (i.e. w:Weber vector) ๐…}[R 19]

P=C๐…=D[๐…๐…]P=ρ{ι๐Œ+๐„+1cp๐Œιcp๐„}=Pe+ιPmPe=ρ{ιc(p๐„)+๐„+1cVp๐Œ}Pm=ρ{ιc(p๐Œ)+๐Œ+1cVp๐„}[D=l]

equivalent to (d1,e1,f1).

In his textbook on quaternionic special relativity written 1914, he defined four-force density using stress-energy tensor ๐”– like Abraham and Laue, as well as in terms of Minkowski's alternative force definition FMnk using four-velocity Y:[R 20]

F=ρ{ιc(p๐„)+๐„+1cVp๐Œ}=ιc(๐๐ฉ)+๐=1c๐‘[D]๐‹=lor๐”–FMnk=12[F+1c2YFcY][๐=ρ{๐„+1cV๐ฉ๐Œ}, D=l, lor=|x, y, z, it|]

equivalent to (d1,e1,f1).

Lewis and Wilson (1912)

w:Gilbert Newton Lewis and w:Edwin Bidwell Wilson explicitly defined a four-vector called โ€œextended momentumโ€ (i.e. four-momentum) m0๐ฐ, deriving the โ€œextended forceโ€ (i.e. four force) using ๐œ as four-acceleration:[R 21]

m0๐œ=dm0๐ฐds=dmvds๐ค1+dmds๐ค4=11v2(dmvdt๐ค1+dmdt๐ค4)

equivalent to (a, c).

Kottler (1912)

While formulating electrodynamics in a generally covariant way, w:Friedrich Kottler expressed the โ€œMinkowski forceโ€ Fα in terms of the electromagnetic field-tensor Fαβ, four-current ๐(β), stress-energy tensor Sαβ:[R 22]

Fα(y)=βFαβ(y)๐(β)(y)1๐”ด2/c2[βFαβ(y)๐(β)(y)=βFαβ(y)γy(γ)Fβγ(y)=βy(β)Sαβ]

equivalent to (e, f).

In 1914 Kottler derived the equations of motion from the โ€œNordstrรถm tensorโ€ (i.e. dust solution of the stress energy tensor) in terms of rest mass density ν0, which he equated to the action of a constant external electromagnetic field in terms of electromagnetic tensor F(hk) and charge density ϱ:[R 23]

k=14x(k)(νdx(h)dtdx(k)dt)=νd2x(h)dt2=K(h)=ϱck=14F(hk)x(k)

equivalent to (f).

Einstein (1912-14)

In an unpublished manuscript on special relativity, written between 1912-1914, w:Albert Einstein wrote the four-force density (Kμ) in terms of electromagnetic tensor (๐”‰μν), four-current (๐”ν), stress-energy tensor (Tμν):[R 24]

(๐”‰μν)(๐”ν)=(Kμ)K1=ρ(๐”ขx+๐”ฎyc๐”ฅz๐”ฎzc๐”ฅy)K2=ρ(๐”ขy+๐”ฎzc๐”ฅx๐”ฎxc๐”ฅz)K3=ρ(๐”ขz+๐”ฎxc๐”ฅy๐”ฎyc๐”ฅx)K4=icρ(๐”ฎx๐”ขx+๐”ฎy๐”ขy+๐”ฎz๐”ขz)(Kμ)=(xν)(Tμν)K1=pxxx1pxyx2pxzx3ic๐ฌxx4K4=ic๐ฌxx1ic๐ฌyx2ic๐ฌzx3(w)x4

equivalent to (d1,e1,f1).

References

Template:Reflist

  • {{#section:History of Topics in Special Relativity/relsource|abra09elek}}
  • {{#section:History of Topics in Special Relativity/relsource|abra09mech}}
  • {{#section:History of Topics in Special Relativity/relsource|abra10elek}}
  • {{#section:History of Topics in Special Relativity/relsource|bate10elec}}
  • {{#section:History of Topics in Special Relativity/relsource|born09elek}}
  • {{#section:History of Topics in Special Relativity/relsource|einst12manu}}
  • {{#section:History of Topics in Special Relativity/relsource|frank09a}}
  • {{#section:History of Topics in Special Relativity/relsource|ignat10prin2}}
  • {{#section:History of Topics in Special Relativity/relsource|kott12mink}}
  • {{#section:History of Topics in Special Relativity/relsource|kott14bes}}
  • {{#section:History of Topics in Special Relativity/relsource|laue11prin}}
  • {{#section:History of Topics in Special Relativity/relsource|laue13prin}}
  • {{#section:History of Topics in Special Relativity/relsource|lewis12non}}
  • {{#section:History of Topics in Special Relativity/relsource|mink07a}}
  • {{#section:History of Topics in Special Relativity/relsource|mink07b}}
  • {{#section:History of Topics in Special Relativity/relsource|poinc05b}}
  • {{#section:History of Topics in Special Relativity/relsource|silber11quat}}
  • {{#section:History of Topics in Special Relativity/relsource|silber14quat}}
  • {{#section:History of Topics in Special Relativity/relsource|som10alg}}


Cite error: <ref> tags exist for a group named "R", but no corresponding <references group="R"/> tag was found