Materials Science and Engineering/Derivations/Models of Micro and Nanoscale Processing
Jump to navigation
Jump to search
First-Order Planar Growth Kinetics - The Linear Parabolic Model
Oxide grows by indiffusion
Chemical Reaction
Three Fluxes
Transport of the oxidant to the oxide surface
- : flux in molecules
- : concentration difference between gas flow and surface
- : mass transfer coefficient
Equilibrium concentration of a gas species
The equilibrium concentration of a gas species dissolved in a solid is proportional to partial pressure of species at the surface.
- :oxidant concentration in oxide that would be in equilibrium with
- : bulk gas pressure
From the ideal gas law:
Diffusion of oxidant through oxide to interface
In steady state,
- and : concetration at two interfaces
- : oxide thickness
Oxygen and water seem to diffuse in different manners, though the effective diffusivities are of the same order.
Reaction at the Si/SiO2 interface
- : interface reaction rate constant
Equating three fluxes
With
The approximations are based on the observation that is very large. Gas absorption occurs rapidly compared with chemistry at interface.
Limiting cases
Reaction rate controlled - thin oxides
Oxidant supplied to interface fast compared to that required to sustain the interface reaction
Diffusion controlled - thick oxides
- : number of oxidant molecules incorporated
Integrate from initial oxide thickness to final thickness :