Materials Science and Engineering/Equations/Kinetics

From testwiki
Jump to navigation Jump to search

Mathematical Foundation

Time-Dependent Field

 dcdt=cv+ct
v(r): Velocity
c(r,t): Time-Dependent Field

Accumulation

Rate of accumulation is the negative of the divergence of the flux of the quantity plus the rate of production

 cit=Ji+ρi˙
ρi˙(r): Rate of production of the density of i in ΔV
Ji: The divergence of Ji
 Mi˙=ΔVJi+ρi˙dx
Mi˙: Rate at which i flows through area ΔA

Divergence Theorem

 B(ΔV)Jn˙dA=ΔVJdV
B(ΔV): Oriented surface around a volume

General Set of Linear Equations

 M11x1+M12x2++M1nxn=y1M21x1+M22x2++M2nxn=y2Mm1x1+Mm2x2++Mmnxn=ym

The vector equation is equivalent to a matrix equation of the form

 M𝐱=𝐲

where M is an m×n matrix, x is a column vector with n entries, and y is a column vector with m entries.

M=[M11M12M1nM21M22M2nMm1Mm2Mmn],𝐱=[x1x2xn],𝐲=[y1y2ym]

Eigenvalue Equation

 M_e=λe
M_: nxn square matrix or tensor
e: eigenvector (special vector)
λ: eigenvalue (special scalar multiplier)

Transformation of Rank-Two Tensor

 [diagonalized matrix]=[eigenvector column matrix]1[square matrix][eigenvector column matrix]

Irreversible Thermodynamics

Differential Change in Entropy

 TdS=dujΨjdζj
jΨjdζj=Pdv+ϕdq+γdA+μ1dc1+

Entropy Production

 Tσ˙=JQTTjJiΨj
σ˙: Rate of entropy-density creation
JQ: Flux of heat
Ji: Conjugate force
Ψj: Conjugate flux

Empirical Force-Flux Law

Fourier's

 JQ=KT

Modified Fick's

 Ji=Miciμi

Ohm's

 Jq=ρϕ

Basic Postulate of Irreversible Thermodynamics

The local generation of entropy, σ˙ is nonnegative

 σ˙=st+JQ0

Coupling Between Forces and Fluxes

 JQFQFQ+JQFqFq++JQFNcFNc=JQ(FQ,Fq,F1,F2,...,FNc)JqFQFQ+JqFqFq++JqFNcFNc=Jq(FQ,Fq,F1,F2,...,FNc)JNcFQFQ+JNcFqFq++JNcFNcFNc=JNc(FQ,Fq,F1,F2,...,FNc)

Abbreviated form:

 Jα=βLαβFβ
Lαβ=JαFβ

Force-Flux Relations with Constrained Extensive Quantities

 TdS=du+dwi=1Nc1(μiμNc)dci
Fi=(μiμNc)

Diffusion Potential

 F1=Φ1

Onsager Symmetry Principle

 Lαβ=Lβα
 JαFβ=JβFα

Driving Forces and Fluxes

Diffusion in Absence of Chemical Effects

  • Components diffuse in chemically homogeneous material
  • Diffusion measured with radioactive tracer
  • Fick's law flux equation derived when self-diffusion occurs by the vacancy-exchange mechanism.
  • The crystal is network-constrained
  • There are three components:
    • Inert atoms
    • Radioactive atoms
    • Vacancies
  • C-frame: single reference frame
  • Vacancies assumed to be in equilibrium throughout
  • Raoultian behavior
 J*1C=kT[L11c1L1*1c*1]c*1x
 J*1C=*Dc*1x

Diffusion of i in Chemically Homogeneous Binary Solution

 J*1C=kT[L11c1L1*1c*1]c*1x
 J*1C=*D1c*1x

Diffusion of Substitutional Particles in Concentration Gradient

  • Constraint associated with vacancy mechanism: J1c+J2c+Jvc=0
    • Difference in fluxes of the two substitutional species requires net flux of vacancies.
  • Gibbs-Duhem relation: c1μ1x+c2μ2x+cvμvx
  • Chemical potential gradients related to concentration gradients: μi=μi+kTln(γi<Ω>ci)

Flux is proportional to the concentration gradient

 J1c=kT[L11c1L12c2][1+lnγ1lnc1+ln<Ω>lnc1]c1x
 J1c=D1c1x

Assumptions that simplify D1

  • Concentration-independent average site volume <Ω>
  • The coupling (off-diagonal) terms, L12/c2 and L1*1/c*1, are small compared with the direct term L11/c2
 D1[1+lnγ1lnc1]*D1

Diffusion in a Volume-Fixed (V-Frame)

  • Velocity of a local C-frame with respect to the V-frame: velocity of any inert marker with respect to the V-frame
  • Flux of 1 in the V-frame:
 J1v=[c1Ω1D2+c2+Ω2D1]c1x
  • The interdiffusivity, c1Ω1D2+c2+Ω2D1, can be simplified through Ω1=Ω2=<Ω>
  • The L-frame and the V-frame are the same

Diffusion of Interstitial Particles in Concentration Gradient

  • J1c=L11F1
  • J1c=L11Φ1
  • J1c=L11μ1
  • μ1=μ1+kTln(K1c1)
  • μ1=kTc1c1
 J1c=L11kTc1c1
  • Evaluate L11 by substitution of interstitial mobility, M1
    • v1c=M1μ1
    • v1c=M1kTc1c1
    • J1c=v1cc1
 J1c=M1kTc1

Diffusion of Charged Ions in Ionic Conductors

  • J1=L11F1
  • J1=L11Φ1
  • J1=L11(μ1+q1ϕ)
 J1=D1c1D1c1q1kT(ϕ)
  • E=ϕ: Electric field
  • Absence of concentration gradient:
    • Jq=q1J1
    • Jq=D1c1q12kT(ϕ)
  • Electrical conductivity:
    • ρ=D1c1q12kT

Electromigration in Metals

  • Two fluxes when electric field is applied to a dilute solution of interstitial atoms in metal
    • Jq: Flux of conjuction electrons
    • J1: Flux of interstitials
  • Fq=E
  • Fq=ϕ
 J1=L11μ1+L1qE
 J1=D1(c1c1βkTE)

Mass Diffusion in Thermal Gradient

  • Interstitial flux with thermal gradient where both heat flow and mass diffusion of interstitial component occurs:
 J1=L11μ1L1qTT
 J1=D1c1D1c1Q1transkT2T

Mass Diffusion Driven by Capillarity

  • The system consists of two network-constrained components:
    • Host atoms
    • Vacancies
  • No mass flow within the crystal (the crystal C-frame is also the V-frame)
  • Constant temperature and no electric field
  • JA=LAAFA
  • JA=LAAΦA
  • JA=LAA(μAμv)
  • JV=JA

Fick's Second Law

Diffusion Equation in the General Form

 ct=n˙J
n˙: source or sink term
J: any flux in a V-frame

Fick's Second Law

 ct=J
 ct=(Dc)

Linearization of Diffusion Equation

 ct=Do2c

Heat Equation

 ht=JQ
 cPTt=(KT)
 Tt=(KcPT)
 (κT)
h: enthalpy density
cP: heat capacity
K/cp=κ: thermal diffusivity

Constant Diffusivity

ct=D2c

One-Dimensional Diffusion Along x from an Initial Step Function

c(x,t)=c¯+Δc2erf(x4Dt)

Localized Source

 c(x,t)=coΔx4πDtex2/(4Dt)
 c(x,t)=nd4πDtex2/(4Dt)
  • Source strength, nd=c(x)dx

Diffusivity as a Function of Concentration

 ct=[D(c)c]
  • Interdiffusivity: D(c1)=12τdxdc1c1Rc1x(c)dc

Diffusivity as a Function of Time

 ct=[D(t)c]
 ct=D(t)2c]
  • Change of variable: τD=0tD(t)dt
  • Transformed equation: cτD=2c
  • Solution:
c(x,τD)=c¯+Δc2erf(x4τD)
c(x,t)=c¯+Δc2erf(x40tD(t)dt)

Diffusivity as a Function of Direction

 J=𝐃c
  • The diagonal elements of 𝐃^ are the eigenvalues of 𝐃, and the coordinate system of 𝐃^ defines the principal axes.
    • ct=J
    • ct=𝐃^c
  • Relation of 𝐃 and 𝐃^:
 𝐃^=R_𝐃R_1

Steady-State Solutions

Harmonic Functions

 2c=0

One Dimension

 J=Ddcdx
 J=Dc0cLL

Cylindrical Shell

  • Laplacian Operator: 2c=1rr(rcr)+1r22cθ2+2cx2
  • Integrate Twice and Apply the Boundary Conditions:
 c(r)=cincincoutln(rout/rin)ln(rrin)

Spherical Shell

  • Laplacian operator in spherical coordinates

2c=1r2[r(r2cr)+1sinθθ(sinθcθ)+1sin2θ2cϕ2]

Variable Diffusivity

  • Steady-state conditions
  • D varies with position
 (Dc)=0
  • Solution is obtained by integration:
 c(x)=c(x1)+a1x1xdζD(ζ)

Infinite Media with Instantaneous Localized Source

 c(x,y,z,t)=ndx4πDtex2/(4Dt)×ndy4πDtey2/(4Dt)×ndz4πDtez2/(4Dt)

Solutions with the Error Function

  • Uniform distribution of point, line, or plana source placed along x>0
  • Contribution at a general position x from the source:
cζ(x,t)=codζ4πDte(ζx)2/(4Dt)
  • Integral over all sources:
c(x,t)=co4πDt0e(ζx)2/(4Dt)dζ
 c(x,t)=co2+co2erf(x2Dt)

Method of Separation of Variables

  • System : Three Dimensions, (x,y,z)
  • Equation : dcdt=D2c
  • Solution : c(r,θ,z,t)=R(r)Θ(θ)Z(z)T(t)

Method of Laplace Transforms

  • Laplace transform of a function f(x,t)
 L{f(x,t)}=f^(x,p)
 L{f(x,t)}=0eptf(x,t)dt

Atomic Models of Diffusion

Model of One-Particle with Step Potential-Energy Wells

 T=kT2πm1Lwelle(EAEwell)/(kT)
 T=kT2πm1Lwelle(Em)/(kT)

Model of One-Particle with Step Potential-Energy Wells

 T=12πβme(EAEwell)/(kT)
 T=νeEm/(kT)

Many-Body Model

 T=νeGm/(kT)

Diffusion as Series of Discrete Jumps

 <R2(Nτ)>=Nτ<r2>+2<(j=1Nτ1i=1Nτj|ri||ri+j|cosθi,i+j>

Diffusivity and Mean-Square Particle Displacement

 <R2(τ)>=6Dτ

Relation of Macroscopic Diffusivity and Microscopic Jump Parameters

 D=T<r2>2

Diffusion and Correlated Jumps

  • Correlation factor:
 𝐟=1+2Nτ<r2><(j=1Nτ1i=1Nτj|ri||ri+j|cosθi,i+j>
  • Macroscopic Diffusivity and Microscopic Parameters:
 D=<r2>Nτ6τ𝐟
 D=Tτ<r2>6τ𝐟
 D=T<r2>6𝐟

Atomic Models of Diffusivity

Metals

Correlation Factor

 𝐟=1+<cosθ>1<cosθ>
 𝐟z1z+1

Isotope Effect

 *D(mass1)*D(mass2)=T1T2=T'1T'2=ν1ν2=m1m2