Micromechanics of composites/Average stress power in a RVE with finite strain

From testwiki
Jump to navigation Jump to search

Template:TOCright

Average stress power in a RVE

Recall the equation for the balance of energy (with respect to the reference configuration)

ρ0eห™=๐‘ทT:๐‘ญห™0๐ช+ρ0s.

The quantity ๐‘ทT:๐‘ญห™ is the stress power.

The average stress power is defined as

๐‘ทT:๐‘ญห™:=1V0Ω0๐‘ทT:๐‘ญห™dV.

Here ๐‘ทT is an arbitrary self-equilibrating nominal stress field that satisfies the balance of momentum (without any body forces or inertial forces) and ๐‘ญห™ is the time rate of change of ๐‘ญ. The reference configuration can be arbitrary. Also, the nominal stress and the rate ๐‘ญห™ need not be related.

Note that in that case

tr(๐‘ทT:๐‘ญห™)=1V0Ω0tr(๐‘ท๐‘ญห™)dV=1V0Ω0tr(๐‘ญห™๐‘ท)dV=tr(๐‘ญห™๐‘ท).

We can express the stress power in terms of boundary tractions and boundary velocities using the relation (see Appendix)

Ω๐ฏ(๐‘บT๐ง)dA=Ω[๐ฏ๐‘บ+๐ฏ(๐‘บT)]dV.

In this case, we have ΩΩ0, ΩΩ0, 0, ๐ฏ๐ฑห™, ๐‘บ๐‘ท, and ๐ง๐. Then

Ω๐ฑห™(๐‘ทT๐)dA=Ω[0๐ฑห™๐‘ท+๐ฑห™(0๐‘ทT)]dV.

Using the balance of linear momentum (in the absence of body and inertial forces), we get

Ω๐ฑห™(๐‘ทT๐)dA=Ω0๐ฑห™๐‘ทdV.

Recalling that

๐‘ญห™=t(๐ฑ๐—)=๐—(๐ฑt)=0๐ฑห™

we then have

Ω๐‘ญห™๐‘ทdV=Ω๐ฑห™(๐‘ทT๐)dA.

If ๐“ยฏ is a self equilibrating traction applied on the boundary that leads to the stress field ๐‘ท, i.e., ๐“ยฏ=๐‘ทT๐, then we have

Ω๐‘ญห™๐‘ทdV=Ω๐ฑห™๐“ยฏdA.

Note that the fields ๐‘ญห™ and ๐‘ท need not be related and hence the velocities ๐ฑห™ and the tractions ๐“ยฏ are not related.

If the boundary velocity field ๐ฑห™ leads to the rate ๐‘ญห™, using the identity (see Appendix)

๐‘ญห™๐‘ท๐‘ญห™๐‘ท=(๐‘ญห™๐‘ญห™)(๐‘ท๐‘ท)

we can show that (see Appendix)

๐‘ญห™๐‘ท๐‘ญห™๐‘ท=1V0Ω0[๐ฑห™๐‘ญห™๐—]{[๐‘ท๐‘ท]T๐}dA=1V0Ω0[๐ฑห™๐‘ญห™๐—](๐‘ทT๐)dA=1V0Ω0๐ฑห™{[๐‘ท๐‘ท]T๐}dA.

Remark

Using similar arguments, if we assume that ๐‘ญ is a deformation that is compatible with an applied boundary displacement ๐ฎ=๐ฑ๐—,we can show that

๐‘ญ๐‘ท๐‘ญ๐‘ท=1V0Ω0[๐ฑ๐‘ญ๐—]{[๐‘ท๐‘ท]T๐}dA=1V0Ω0[๐ฑ๐‘ญ๐—](๐‘ทT๐)dA=1V0Ω0๐ฑ{[๐‘ท๐‘ท]T๐}dA.

We can arrive at ๐‘ญห™๐‘ท=๐‘ญห™๐‘ท or ๐‘ญ๐‘ท=๐‘ญ๐‘ท if either of the following conditions is satisfied at the boundary:

  1. ๐ฑห™=๐‘ญห™๐— or ๐ฑ=๐‘ญ๐—.
  2. ๐‘ท๐=๐‘ทT๐.

Linear boundary velocities/displacements

If a linear velocity field is prescribed on the boundary Ω0, we can express this field as

๐ฑห™(๐—,t)=๐‘ฎห™(t)๐—๐—Ω0.

Now,

๐‘ญห™=1V0Ω0๐ฑห™๐dA=1V0Ω0(๐‘ฎห™๐—)๐dA=๐‘ฎห™(1V0Ω0๐—๐dA).

Recall that

Ω00๐—dV=Ω0๐—๐dA.

Therefore,

๐‘ญห™=๐‘ฎห™(1V0Ω00๐—dA)=๐‘ฎห™(1V0Ω01dA)=๐‘ฎห™.

Hence,

๐‘ญห™=๐‘ฎห™๐ฑห™๐‘ญห™๐—=๐ŸŽ.

Then,

๐‘ญห™๐‘ท๐‘ญห™๐‘ท=1V0Ω0[๐ฑห™๐‘ญห™๐—](๐‘ทT๐)dA=1V0Ω0[๐ฑห™๐‘ฎห™๐—](๐‘ทT๐)dA=๐ŸŽ

Hence,

๐‘ญห™๐‘ท=๐‘ญห™๐‘ท.

Similarly, if a linear displacement field is prescribed on the boundary such that

๐ฎ(๐—,t)=๐‘ฎ(t)๐—๐—๐ฑ(๐—)=๐‘ฎ(t)๐—๐—Ω0

we can show that

๐‘ญ=๐‘ฎ๐ฑ๐‘ญ๐—=๐ŸŽ.

This leads to the equality

๐‘ญ๐‘ท=๐‘ญ๐‘ท.

Recall that, the average Kirchhoff stress is given by τ=๐‘ญ๐‘ท. Therefore, if a uniform boundary displacement is prescribed, we have

τ=๐‘ญ๐‘ท=๐‘ญ๐‘ท=τ

or,

τ=τ.

Uniform boundary tractions

A uniform boundary traction field in the reference configuration can be represented as

๐“ยฏ(๐—,t)=๐‘ฎT(t)๐(๐—)๐—Ω0.

Now,

๐‘ท=1V0Ω0๐—๐“ยฏdA=1V0Ω0๐—(๐‘ฎT๐dA=(1V0Ω0๐—๐dA)๐‘ฎ=1๐‘ฎ=๐‘ฎ.

Since the surface tractions are related to the nominal stress by ๐“ยฏ(๐—,t)=๐‘ทT(๐—,t)๐(๐—), we must have

๐‘ท=๐‘ท.

Therefore,

๐‘ญห™๐‘ท๐‘ญห™๐‘ท=1V0Ω0๐ฑห™{[๐‘ท๐‘ท]T๐}dA=๐ŸŽ

or,

๐‘ญห™๐‘ท=๐‘ญห™๐‘ท.

Similarly,

๐‘ญ๐‘ท=๐‘ญ๐‘ท.

Hence, using the same argument as for the previous case, we have

τ=τ.


Template:Subpage navbar