Micromechanics of composites/Balance of linear momentum

From testwiki
Jump to navigation Jump to search

Template:TOCright

Statement of the balance of linear momentum

The balance of linear momentum can be expressed as:

Template:Center top
ρ๐ฏห™σρ๐›=0 
Template:Center bottom

where ρ(๐ฑ,t) is the mass density, ๐ฏ(๐ฑ,t) is the velocity, σ(๐ฑ,t) is the Cauchy stress, and ρ๐› is the body force density.

Proof

Recall the general equation for the balance of a physical quantity

ddt[Ωf(๐ฑ,t)dV]=Ωf(๐ฑ,t)[un(๐ฑ,t)๐ฏ(๐ฑ,t)๐ง(๐ฑ,t)]dA+Ωg(๐ฑ,t)dA+Ωh(๐ฑ,t)dV.

In this case the physical quantity of interest is the momentum density, i.e., f(๐ฑ,t)=ρ(๐ฑ,t)๐ฏ(๐ฑ,t). The source of momentum flux at the surface is the surface traction, i.e., g(๐ฑ,t)=๐ญ. The source of momentum inside the body is the body force, i.e., h(๐ฑ,t)=ρ(๐ฑ,t)๐›(๐ฑ,t). Therefore, we have

ddt[Ωρ๐ฏdV]=Ωρ๐ฏ[un๐ฏ๐ง]dA+Ω๐ญdA+Ωρ๐›dV.

The surface tractions are related to the Cauchy stress by

๐ญ=σ๐ง.

Therefore,

ddt[Ωρ๐ฏdV]=Ωρ๐ฏ[un๐ฏ๐ง]dA+Ωσ๐งdA+Ωρ๐›dV.

Let us assume that Ω is an arbitrary fixed control volume. Then,

Ωt(ρ๐ฏ)dV=Ωρ๐ฏ(๐ฏ๐ง)dA+Ωσ๐งdA+Ωρ๐›dV.

Now, from the definition of the tensor product we have (for all vectors ๐š)

(๐ฎ๐ฏ)๐š=(๐š๐ฏ)๐ฎ.

Therefore,

Ωt(ρ๐ฏ)dV=Ωρ(๐ฏ๐ฏ)๐งdA+Ωσ๐งdA+Ωρ๐›dV.

Using the divergence theorem

Ω๐ฏdV=Ω๐ฏ๐งdA

we have

Ωt(ρ๐ฏ)dV=Ω[ρ(๐ฏ๐ฏ)]dV+ΩσdV+Ωρ๐›dV

or,

Ω[t(ρ๐ฏ)+[(ρ๐ฏ)๐ฏ)]σρ๐›]dV=0.

Since Ω is arbitrary, we have

t(ρ๐ฏ)+[(ρ๐ฏ)๐ฏ)]σρ๐›=0.

Using the identity

(๐ฎ๐ฏ)=(๐ฏ)๐ฎ+(๐ฎ)๐ฏ

we get

ρt๐ฏ+ρ๐ฏt+(๐ฏ)(ρ๐ฏ)+(ρ๐ฏ)๐ฏσρ๐›=0

or,

[ρt+ρ๐ฏ]๐ฏ+ρ๐ฏt+(ρ๐ฏ)๐ฏσρ๐›=0

Using the identity

(φ๐ฏ)=φ๐ฏ+๐ฏ(φ)

we get

[ρt+ρ๐ฏ]๐ฏ+ρ๐ฏt+[ρ๐ฏ+๐ฏ(ρ)]๐ฏσρ๐›=0

From the definition

(๐ฎ๐ฏ)๐š=(๐š๐ฏ)๐ฎ

we have

[๐ฏ(ρ)]๐ฏ=[๐ฏ(ρ)]๐ฏ.

Hence,

[ρt+ρ๐ฏ]๐ฏ+ρ๐ฏt+ρ๐ฏ๐ฏ+[๐ฏ(ρ)]๐ฏσρ๐›=0

or,

[ρt+ρ๐ฏ+ρ๐ฏ]๐ฏ+ρ๐ฏt+ρ๐ฏ๐ฏσρ๐›=0.

The material time derivative of ρ is defined as

ρห™=ρt+ρ๐ฏ.

Therefore,

[ρห™+ρ๐ฏ]๐ฏ+ρ๐ฏt+ρ๐ฏ๐ฏσρ๐›=0.

From the balance of mass, we have

ρห™+ρ๐ฏ=0.

Therefore,

ρ๐ฏt+ρ๐ฏ๐ฏσρ๐›=0.

The material time derivative of ๐ฏ is defined as

๐ฏห™=๐ฏt+๐ฏ๐ฏ.

Hence,

ρ๐ฏห™σρ๐›=0.


Template:Subpage navbar