Micromechanics of composites/Proof 11

From testwiki
Jump to navigation Jump to search

Template:TOCright

Identity 1

Let 𝑨 and 𝑩 be two second order tensors. Show that

𝑨:𝑩=(𝑨T𝑩):1.

Proof:

Using index notation,

𝑨:𝑩=AijBij=AjiTBij=AjiTBikδjk=[𝑨T𝑩]jkδjk=(𝑨T𝑩):1.

Hence,

𝑨:𝑩=(𝑨T𝑩):1

Identity 2

Let 𝑨 be a second order tensor and let 𝐚 and 𝐛 be two vectors. Show that

𝑨:(πšπ›)=(𝑨𝐛)𝐚.

Proof:

It is convenient to use index notation for this. We have

𝑨:(πšπ›)=Aijaibj=(Aijbj)ai=(𝑨𝐛)𝐚.

Hence,

𝑨:(πšπ›)=(𝑨𝐛)𝐚

Identity 3

Let 𝑨 and 𝑩 be two second order tensors and let 𝐚 and 𝐛 be two vectors. Show that

(π‘¨πš)(𝑩𝐛)=(𝑨T𝑩):(πšπ›).

Proof:

Using index notation,

(π‘¨πš)(𝑩𝐛)=(Aijaj)(Bikbk)=(AijBik)(ajbk)=(AjiTBik)(ajbk)=(𝑨T𝑩):(πšπ›).

Hence,

(π‘¨πš)(𝑩𝐛)=(𝑨T𝑩):(πšπ›)

Identity 4

Let 𝑨 be a second order tensors and let 𝐚 and 𝐛 be two vectors. Show that

(π‘¨πš)𝐛=𝑨(πšπ›)and𝐚(𝑨𝐛)=[𝑨(π›πš)]T=(πšπ›)𝑨T.

Proof:

For the first identity, using index notation, we have

[(π‘¨πš)𝐛]ik=(Aijaj)bk=Aij(ajbk)=Aij[πšπ›]jk=𝑨(πšπ›).

Hence,

(π‘¨πš)𝐛=𝑨(πšπ›)

For the second identity, we have

[𝐚(𝑨𝐛)]ij=ai(Ajkbk)=(aibk)Ajk=(aibk)AkjT=[(πšπ›)𝑨T]ij.

Therefore,

𝐚(𝑨𝐛)=(πšπ›)𝑨T.

Now, πšπ›=[π›πš]T and (𝑨𝑩)T=𝑩T𝑨T. Hence,

(πšπ›)𝑨T=(π›πš)T𝑨T=[𝑨(π›πš)]T.

Therefore,

𝐚(𝑨𝐛)=[𝑨(π›πš)]T=(πšπ›)𝑨T


Template:Subpage navbar