Micromechanics of composites/Proof 13

From testwiki
Jump to navigation Jump to search

Question

Let σ be the Cauchy stress and let 𝐯 be the velocity gradient in a body Ω with boundary Ω. Let 𝐧 be the normal to the boundary. Let V be the volume of the body. If the skew-symmetric part of the velocity gradient is zero, i.e., 𝐯=𝐯T, or if the stress field is self equilibrated, i.e., σ=σT, show that

σ:𝐯σ:𝐯=1VΩ[𝐯𝐯𝐱][(σσ)𝐧]dA.

Proof

Taking the trace of each term in the identity

𝑨𝑩𝑨𝑩=[𝑨𝑨][𝑩𝑩]

the difference between the average stress power and the product of the average stress and the average velocity gradient can be written as (using either the symmetry of the stress or of the velocity gradient)

σ:𝐯σ:𝐯=σ:𝐯σ:𝐯𝐯:σ+𝐯:σ=σ:𝐯σ:𝐯𝐯:σ+[𝐯Tσ]:1

Recall that

σ:𝐯=1VΩ(σ𝐧)𝐯dV;𝐯=1VΩ𝐯dV;σ=1VΩ𝐱𝐭¯dA;1VΩ𝐱dV=1.

Also, from the divergence theorem

Ω𝐯dV=Ω𝐯𝐧dA;Ω𝐱dV=Ω𝐱𝐧dA.

Therefore,

σ:𝐯σ:𝐯=1VΩ(σ𝐧)𝐯dVσ:[1VΩ𝐯𝐧dA]𝐯:[1VΩ𝐱𝐭¯dA]+[𝐯Tσ]:[1VΩ𝐱𝐧dA].

Since σ and 𝐯 are independent of 𝐱, we can take these inside the integrals to get

σ:𝐯σ:𝐯=1VΩ[(σ𝐧)𝐯σ:(𝐯𝐧)𝐯:(𝐱𝐭¯)+[𝐯Tσ]:(𝐱𝐧)]dA

Using the identity

(π‘¨πš)(𝑩𝐛)=(𝑨T𝑩):(πšπ›)

we get

[𝐯Tσ]:(𝐱𝐧)=[𝐯𝐱][σ𝐧].

Also, using the identity

𝑨:(πšπ›)=(𝑨𝐛)𝐚

we get

σ:(𝐯𝐧)=[σ𝐧]𝐯;𝐯:(𝐱𝐭¯)=[𝐯𝐭¯]𝐱=[𝐯T𝐱]𝐭¯=[𝐯T𝐱](σ𝐧).

Since 𝐯T=𝐯, we have 𝐯T=𝐯 (we could alternatively use the symmetry of σ to arrive at the following equation). Hence,

𝐯:(𝐱𝐭¯)=[𝐯𝐱](σ𝐧).

Plugging these back into the original equation, we have

σ:𝐯σ:𝐯=1VΩ{(σ𝐧)𝐯[σ𝐧]𝐯[𝐯𝐱](σ𝐧)+[𝐯𝐱][σ𝐧]}dA=1VΩ{[(σσ)𝐧]𝐯[(σσ)𝐧](𝐯𝐱)}dA=1VΩ{[(σσ)𝐧][𝐯𝐯𝐱]}dA.

Hence

σ:𝐯σ:𝐯=1VΩ[[𝐯𝐯𝐱][(σσ)𝐧]]dA.

Template:Subpage navbar