Micromechanics of composites/Proof 2

From testwiki
Jump to navigation Jump to search

Tensor-vector identity 2

Let ๐ฏ be a vector field and let ๐‘บ be a second-order tensor field. Let ๐š and ๐› be two arbitrary vectors. Show that

[(๐ฏ๐š)(๐‘บ๐›)]=๐š[{๐ฏ๐‘บ+๐ฏ(๐‘บT)}๐›].

Proof:

Using the identity (φ๐ฎ)=๐ฎφ+φ๐ฎ we have

[(๐ฏ๐š)(๐‘บ๐›)]=(๐‘บ๐›)(๐ฏ๐š)+(๐ฏ๐š)(๐‘บ๐›).

From the identity (๐ฎ๐ฏ)=๐ฎT๐ฏ+๐ฏT๐ฎ, we have (๐ฏ๐š)=๐ฏT๐š+๐šT๐ฏ.

Since ๐š is constant, ๐š=0, and we have

(๐‘บ๐›)(๐ฏ๐š)=(๐‘บ๐›)(๐ฏT๐š).

From the relation ๐š(๐‘จT๐›)=๐›(๐‘จ๐š) we have

(๐‘บ๐›)(๐ฏT๐š)=๐š[๐ฏ(๐‘บ๐›)].

Using the relation ๐‘จ(๐‘ฉ๐›)=(๐‘จ๐‘ฉ)๐›, we get

๐ฏ(๐‘บ๐›)=(๐ฏ๐‘บ)๐›.

Therefore, the final form of the first term is

(๐‘บ๐›)(๐ฏ๐š)=๐š[(๐ฏ๐‘บ)๐›].

For the second term, from the identity (๐‘บT๐ฏ)=๐‘บ:๐ฏ+๐ฏ(๐‘บ) we get, (๐‘บ๐›)=๐‘บT:๐›+๐›(๐‘บT).

Since ๐› is constant, ๐›=0, and we have

(๐ฏ๐š)(๐‘บ๐›)=(๐ฏ๐š)[๐›(๐‘บT)]=๐š[{๐›(๐‘บT)}๐ฏ].

From the definition (๐ฎ๐ฏ)๐š=(๐š๐ฏ)๐ฎ, we get

[๐›(๐‘บT)]๐ฏ=[๐ฏ(๐‘บT)]๐›.

Therefore, the final form of the second term is

(๐ฏ๐š)(๐‘บ๐›)=๐š[๐ฏ(๐‘บT)]๐›.

Adding the two terms, we get

[(๐ฏ๐š)(๐‘บ๐›)]=๐š[(๐ฏ๐‘บ)๐›]+๐š[๐ฏ(๐‘บT)]๐›.

Therefore,

[(๐ฏ๐š)(๐‘บ๐›)]=๐š[{๐ฏ๐‘บ+๐ฏ(๐‘บT)}๐›]

Template:Subpage navbar