Micromechanics of composites/Proof 3

From testwiki
Jump to navigation Jump to search

Surface-volume integral relation 1

Let Ω be a body and let Ω be its surface. Let ๐ง be the normal to the surface. Let ๐ฏ be a vector field on Ω and let ๐‘บ be a second-order tensor field on Ω. Show that

Ω๐ฏ(๐‘บT๐ง)dA=Ω[๐ฏ๐‘บ+๐ฏ(๐‘บT)]dV.

Proof:

Recall the relation

[(๐ฏ๐š)(๐‘บ๐›)]=๐š[{๐ฏ๐‘บ+๐ฏ(๐‘บT)}๐›].

Integrating over the volume, we have

Ω[(๐ฏ๐š)(๐‘บ๐›)]dV=Ω๐š[{๐ฏ๐‘บ+๐ฏ(๐‘บT)}๐›dV.

Since ๐š and ๐› are constant, we have

Ω[(๐ฏ๐š)(๐‘บ๐›)]dV=๐š[{Ω[๐ฏ๐‘บ+๐ฏ(๐‘บT)]dV}๐›].

From the divergence theorem,

Ω๐ฎdV=Ω๐ฎ๐งdA

we get

Ω[(๐ฏ๐š)(๐‘บ๐›)]dV=Ω[(๐ฏ๐š)(๐‘บ๐›)]๐งdA.

Using the relation

[(๐ฏ๐š)(๐‘บ๐›)]๐ง=๐š[{๐ฏ(๐‘บT๐ง)}๐›]

we get

Ω[(๐ฏ๐š)(๐‘บ๐›)]dV=Ω๐š[{๐ฏ(๐‘บT๐ง)}๐›]dA.

Since ๐š and ๐› are constant, we have

Ω[(๐ฏ๐š)(๐‘บ๐›)]dV=๐š[{Ω๐ฏ(๐‘บT๐ง)dA}๐›].

Therefore,

๐š[{Ω๐ฏ(๐‘บT๐ง)dA}๐›]=๐š[{Ω[๐ฏ๐‘บ+๐ฏ(๐‘บT)]dV}๐›].

Since ๐š and ๐› are arbitrary, we have

Ω๐ฏ(๐‘บT๐ง)dA=Ω[๐ฏ๐‘บ+๐ฏ(๐‘บT)]dV


Template:Subpage navbar