Nonlinear finite elements/Homework11/Solutions/Problem 1/Part 13

From testwiki
Jump to navigation Jump to search

Problem 1: Part 13: Trial elastic stress

Starting from equation (3) show that

𝐬n+1trial=𝐬n+2μ(𝐞n+1𝐞n)

where 𝐬 is the deviatoric part of σ and 𝐞 is the deviatoric part of ε.

From equation (3) we have

σn+1trial=[λtr(εn+1)1+2μεn+1][λtr(εnp)1+2μεnp]=(λ11+2μ𝖨):(εn+1εnp)=(λ11+2μ𝖨):(εn+1εn+εne)=(λ11+2μ𝖨):εne+(λ11+2μ𝖨):(εn+1εn)=σn+(λ11+2μ𝖨):(εn+1εn)

The deviatoric parts of the stress and strain are

𝐬n+1trial=σn+1trial13tr(σn+1trial)1;𝐞n+1=εn+113tr(εn+1)1;𝐞n=εn13tr(𝐞n)1

Therefore,

𝐬n+1trial=σn+1trial13tr(σn+1trial)1=σn+(λ11+2μ𝖨):(εn+1εn)13trσn113tr[λ11+2μ𝖨):(εn+1εn)]1

Now,

(λ11+2μ𝖨):(εn+1εn)=λtr(εn+1)1+2μεn+1λtr(εn)12μεn

Therefore,

tr[(λ11+2μ𝖨):(εn+1εn)]=λtr(εn+1)tr(1)+2μtr(εn+1)λtr(εn)tr(1)2μtr(εn)=3λtr(εn+1)+2μtr(εn+1)3λtr(εn)2μtr(εn)

Hence

𝐬n+1trial=σn13trσn+λtr(εn+1)1+2μεn+1λtr(εn)12μεnλtr(εn+1)123μtr(εn+1)1+λtr(εn)1+23μtr(εn)1=𝐬n+2μ(εn+113tr(εn+1)1)2μ(εn13tr(εn)1)=𝐬n+2μ𝐞n+12μ𝐞n

This shows that

𝐬n+1trial=𝐬n+2μ(𝐞n+1𝐞n)

Template:Subpage navbar