Nonlinear finite elements/Homework11/Solutions/Problem 1/Part 14

From testwiki
Jump to navigation Jump to search

Problem 1: Part 14: Return mapping

Show that

𝐬n+1=𝐬n+1trial2μΔγ𝐧n.

We have

σn+1=𝖒:εn+1e=𝖒:(εn+1εn+1p)=(λ11+2μ𝖨):(εn+1εn+1p)=(λ11+2μ𝖨):(εn+1εnp32Δγ𝐧n)=λ[tr(εn+1)1tr(εnp)132Δγtr(𝐧n)1]+2μ[εn+1εnp32Δγ𝐧n]=λ[tr(εn+1)tr(εnp)32Δγtr(𝐧n)]1+2μ[εn+1εnp32Δγ𝐧n]=λ[tr(εn+1)tr(εnp)]1+2μ[εn+1εnp32Δγ𝐧n](sincetr(𝐧)=0)

Now

𝐬n+1=σn+113tr(σn+1)1

The trace of the stress is given by

tr(σn+1)=λ[tr(εn+1)tr(εnp)]tr(1)+2μ[tr(εn+1)tr(εnp)32Δγtr(𝐧n)]=3λ[tr(εn+1)tr(εnp)]+2μ[tr(εn+1)tr(εnp)](sincetr(𝐧)=0)=(3λ+2μ)tr(εn+1)(3λ+2μ)tr(εnp)

Therefore,

𝐬n+1=σn+113tr(σn+1)1=λ[tr(εn+1)tr(εnp)]1+2μ[εn+1εnp32Δγ𝐧n](λ+23μ)tr(εn+1)1+(λ+23μ)tr(εnp)1=2μ[εn+113tr(εn+1)1]2μ[εnp13tr(εnp)1]2μ32Δγ𝐧n=2μ𝐞n+12μ[εnεne13tr(εnεne)1]2μ32Δγ𝐧n=2μ𝐞n+12μ[εnεne13tr(εn)1+13tr(εne)1]2μ32Δγ𝐧n=2μ[𝐞n+1𝐞n]+2μ[εne13tr(εne)1]2μ32Δγ𝐧n=𝐬n+1trial𝐬n+2μ[εne13tr(εne)1]2μ32Δγ𝐧n

The stress-strain relation is

σn=λtr(εne)1+2μεne

Hence,

𝐬n=λtr(εne)1+2μεne13λtr(εne)tr(1)123μtr(εne)1=2μ[εne13tr(εne)1]

Plugging into expression for 𝐬n+1, we get

𝐬n+1=𝐬n+1trial𝐬n+𝐬n2μ32Δγ𝐧n

Therefore,

𝐬n+1=𝐬n+1trial2μ32Δγ𝐧n

Remark: If we write the yield function as

f=𝐬:𝐬23σy.

then the above equation takes the form

𝐬n+1=𝐬n+1trial2μΔγ𝐧n

These are equivalent.

Template:Subpage navbar