Nonlinear finite elements/Homework11/Solutions/Problem 1/Part 16

From testwiki
Jump to navigation Jump to search

Problem 1: Part 16: Newton iterations

Let the nonlinear equations be g(Δγ)=0. Recall that the Newton method requires that we iterate using the formula

Δγr+1=Δγrg(Δγr)dg(Δγr)dΔγ

where r is the Newton iteration number. Derive an expression for the derivative of g that is required in the above formula.

Let us find the derivatives term by term. For the first term

ddΔγ[9μ2(Δγ)2]=18μ2Δγ

For the second term

ddΔγ[6μ32Δγ𝐬n+1trial:𝐧n]=6μ32𝐬n+1trial:𝐧n

For the fourth term

ddΔγ[32𝐬n+1trial:𝐬n+1trial]=0

For the third term

ddΔγ[{σ0+B(αn+Δγεnp:𝐧nεnp)n}2{1(Tn+32χΔγρnCp𝐬nT0TmT0)}2]=ddΔγ[PnQn]=dPndΔγQn+dQndΔγPn

Now,

dPndΔγ=ddΔγ[{σ0+B(αn+Δγεnp:𝐧nεnp)n}2]=2{σ0+B(αn+Δγεnp:𝐧nεnp)n}ddΔγ[σ0+B(αn+Δγεnp:𝐧nεnp)n]=2{σ0+B(αn+Δγεnp:𝐧nεnp)n}[nB(αn+Δγεnp:𝐧nεnp)n1]ddΔγ(αn+Δγεnp:𝐧nεnp)=2{σ0+B(αn+Δγεnp:𝐧nεnp)n}[nB(αn+Δγεnp:𝐧nεnp)n1](εnp:𝐧nεnp)=2nB(εnp:𝐧nεnp)(αn+Δγεnp:𝐧nεnp)n1[σ0+B(αn+Δγεnp:𝐧nεnp)n]

Similarly,

dQndΔγ=ddΔγ[{1(Tn+32χΔγρnCp𝐬nT0TmT0)}2]=2{1(Tn+32χΔγρnCp𝐬nT0TmT0)}ddΔγ[(Tn+32χΔγρnCp𝐬nT0TmT0)]=232{1(Tn+32χΔγρnCp𝐬nT0TmT0)}(χ𝐬nρnCp(TmT0))=6(χ𝐬nρnCp)[TmTn32χΔγρnCp𝐬n(TmT0)2]

Therefore, the full expression for the derivative is

dg(Δγr)dΔγ=18μ2Δγ6μ32𝐬n+1trial:𝐧n2nB(εnp:𝐧nεnp)(αn+Δγεnp:𝐧nεnp)n1[σ0+B(αn+Δγεnp:𝐧nεnp)n][1(Tn+32χΔγρnCp𝐬nT0TmT0)]2+6(χ𝐬nρnCp)[TmTn32χΔγρnCp𝐬n(TmT0)2][σ0+B(αn+Δγεnp:𝐧nεnp)n]2

Template:Subpage navbar