Nonlinear finite elements/Homework11/Solutions/Problem 1/Part 7

From testwiki
Jump to navigation Jump to search

Problem 1: Part 7: Flow rule

The J2 theory of plasticity also states that the material satisfies the von Mises yield condition

f(σ,α,T):=32𝐬σy(α,T)

where 𝐬 is the deviatoric part of the stress σ. Derive an expression for f/σ in terms of the normal to the yield surface

𝐧=𝐬𝐬.


The von Mises yield function is

f=32𝐬:𝐬σy.

We can alternatively write the yield function as

f=𝐬:𝐬23σy.

in which case the following equations take a slightly different form.

Therefore,

fσ=fσ=32σ(𝐬:𝐬)=(32)(12)(1𝐬:𝐬)σ(𝐬:𝐬)=(32)(12)(1𝐬)σ(𝐬:𝐬)

The deviatoric part of σ is

𝐬=σ13tr(σ)1orsij=σij13σkkδij

Therefore,

𝐬:𝐬=(σ13tr(σ)1):(σ13tr(σ)1)=σ:σ23tr(σ)σ:1+19(tr(σ))21:1

Now,

σ:1=σijδij=σii=tr(σ)

and

1:1=δijδij=δii=3.

Therefore,

𝐬:𝐬=σ:σ23(tr(σ))2+13(tr(σ))2=σ:σ13(tr(σ))2.

The derivative with respect to σ is

σ(𝐬:𝐬)=σ(σ:σ)13σ[(tr(σ))2]=σ(σ:σ)23tr(σ)σ[tr(σ)]

Let us use index notation to find the derivatives. In index notation,

σ(σ:σ)=σij(σklσkl)=σij(σ112+σ122+σ132+σ212+σ222+σ232+σ312+σ322+σ332)

Hence, the components of the second-order tensor are

σ11(σklσkl)=2σ11σ12(σklσkl)=2σ12σ13(σklσkl)=2σ13σ21(σklσkl)=2σ21σ22(σklσkl)=2σ22σ23(σklσkl)=2σ23σ31(σklσkl)=2σ31σ32(σklσkl)=2σ32σ33(σklσkl)=2σ33

Therefore,

σij(σklσkl)=2σijorσ(σ:σ)=2σ.

Similarly,

σ[tr(σ)]=σij(σkk)=σij(σ11+σ22+σ33)

Hence, the components of the second-order tensor are

σ11(σkk)=1σ12(σkk)=0σ13(σkk)=0σ21(σkk)=0σ22(σkk)=1σ23(σkk)=0σ31(σkk)=0σ32(σkk)=0σ33(σkk)=1

Therefore,

σij(σkk)=δijorσ[tr(σ)]=1.

Plugging the above results into the expression for the derivative of 𝐬:𝐬 we get

σ(𝐬:𝐬)=2σ23tr(σ)1=2(σ13tr(σ)1)=2𝐬.

Hence, we get

fσ=fσ=(32)(12)(1𝐬)2𝐬=32𝐬𝐬=32𝐧

The required expression is

fσ=fσ=32𝐧.

Template:Subpage navbar