Nonlinear finite elements/Homework11/Solutions/Problem 1/Part 9

From testwiki
Jump to navigation Jump to search

Problem 1: Part 9: Elastic-plastic tangent modulus

Assume that the elastic response of the material is linear, i.e.,

𝖒=λ11+2μ𝖨.

Derive the expression for the elastic-plastic tangent modulus for a von Mises yield condition with Johnson-Cook flow stress for a linear elastic material using the expressions that you have derived in the previous parts.

The elastic-plastic tangent modulus is given by

𝖒ep=𝖒((𝖒:fσ)(𝖒:fσ)fσ:𝖒:fσ23fαεp:fσεpχρCpfTσ:fσ).

From the previous parts

fσ=32𝐧;fα=nBαn1[1(TT0TmT0)];fT=(1TmT0)[σ0+Bαn].

Therefore,

𝖒:fσ=32(λ11+2μ𝖨):𝐧=32(λtr(𝐧)1+2μ𝐧)=322μ𝐧.

Some of the results used in the above derivation are shown below.

Recall (from previous homework):

11:𝐧=δijδklnkl=nkkδij=tr(𝐧)1

and

𝖨:𝐧=12(δikδjl+δilδjk)nkl=12(δjlnil+δjknki)=12(nij+nji)=nij=𝐧

(we have used the symmetry of the stress tensor above.)

Also,

tr(𝐧)=tr(𝐬𝐬)=tr(𝐬)𝐬

Now,

𝐬=sij=σij13σkkδijtr(𝐬)=sii=σii13σkkδii=σii13σkk3=σiiσkk=0

Therefore,

tr(𝐧)=0.

Hence,

(𝖒:fσ)(𝖒:fσ)=324μ2𝐧𝐧=6μ2𝐧𝐧

and

fσ:𝖒:fσ=322μ𝐧:𝐧=3μ(𝐬𝐬:𝐬):(𝐬𝐬:𝐬)=3μ𝐬:𝐬𝐬:𝐬=3μ.

Plugging in expression for 𝖒ep we get

𝖒ep=λ11+2μ𝖨(6μ2𝐧𝐧3μnBαn1[1(TT0TmT0)]εp:𝐧εp32χρCp(1TmT0)[σ0+Bαn]σ:𝐧).

Now,

σ:𝐧=(𝐬+13tr(σ)1):𝐬𝐬:𝐬=𝐬:𝐬𝐬:𝐬+13tr(σ)1:𝐬𝐬:𝐬=𝐬:𝐬+13tr(σ)tr(𝐬)𝐬:𝐬=𝐬:𝐬=𝐬

Therefore, the elastic-plastic tangent modulus can be written as

𝖒ep=λ11+2μ[𝖨3μ𝐧𝐧3μnBαn1[1(TT0TmT0)]εp:𝐧εp32χρCp(1TmT0)[σ0+Bαn]𝐬].

Template:Subpage navbar