Nonlinear finite elements/Homework 10/Solutions

From testwiki
Jump to navigation Jump to search



Problem 1: Kinematics and Stress Rates

Given:

Figure 1 shows a linear three-noded triangular element in the reference configuration.

File:NFE HW10Prob1.png
Figure 1. Three-noded triangular element.

The motion of the nodes is given by:

Node1:x1(t)=0y1(t)=0Node2:x2(t)=2(1+at)cosπt2y2(t)=2(1+at)sinπt2Node3:x3(t)=(1+bt)sinπt2y3(t)=(1+bt)cosπt2

The configuration (x,y) of the element at time t is given by

x(ξ,t)=i=13xi(t)Ni(ξ);y(ξ,t)=i=13yi(t)Ni(ξ)

Solutions

Part 1

Template:Font

In the initial configuration t=0. Therefore,

X1=x1(0)=0;Y1=y1(0)=0;X2=x2(0)=2;Y2=y2(0)=0;X3=x3(0)=0;Y3=y3(0)=1.

Therefore, the initial configuration is given by

X(ξ)=i=13XiNi(ξ);Y(ξ)=i=13YiNi(ξ).

Substituting the values of Xi and Yi, we get

X(ξ)=2N2(ξ);Y(ξ)=N3(ξ).

Hence

N2(ξ)=X(ξ)2;N3(ξ)=Y(ξ).

Also, the shape functions must satisfy the partition of unity condition

i=13Ni(ξ)=1.

Therefore,

N1(ξ)=1N2(ξ)N3(ξ)=1X(ξ)2Y(ξ).

The required expressions are

N1(ξ)=1X(ξ)2Y(ξ);N2(ξ)=X(ξ)2;N3(ξ)=Y(ξ).

Part 2

Template:Font

The deformation gradient is given by

𝐅=[xXxYxZyXyYyZzXzYzZ].

Before computing the derivatives, let us express x,y,z in terms of X,Y,Z. Recall

x(ξ,t)=i=13xi(t)Ni(ξ);y(ξ,t)=i=13yi(t)Ni(ξ)

Therefore,

x(ξ,t)=x1(t)[1X(ξ)2Y(ξ)]+x2(t)X(ξ)2+x3(t)Y(ξ)y(ξ,t)=y1(t)[1X(ξ)2Y(ξ)]+y2(t)X(ξ)2+y3(t)Y(ξ)z(ξ,t)=Z(ξ)

Substituting in the expressions for xi and yi, we get

x(ξ,t)=[2(1+at)cosπt2]X(ξ)2[(1+bt)sinπt2]Y(ξ)y(ξ,t)=[2(1+at)sinπt2]X(ξ)2+[(1+bt)cosπt2]Y(ξ)z(ξ,t)=Z(ξ).

In the above expression, the parent coordinates ξ are no longer useful. Therefore, we write

x(𝐗,t)=X(1+at)cosπt2Y(1+bt)sinπt2y(𝐗,t)=X(1+at)sinπt2+Y(1+bt)cosπt2z(𝐗,t)=Z

where 𝐗=(X,Y,Z). Taking derivatives, we get

xX=(1+at)cosπt2xY=(1+bt)sinπt2xZ=0yX=(1+at)sinπt2yY=(1+bt)cosπt2yZ=0zX=0zY=0zZ=1

Therefore,

𝐅(t)=[(1+at)cosπt2(1+bt)sinπt20(1+at)sinπt2(1+bt)cosπt20001].

The Jacobian determinant is

J(t)=det𝐅(t)=[(1+at)cosπt2][(1+bt)cosπt2]+[(1+bt)sinπt2][(1+at)sinπt2].

or

J(t)=(1+at)(1+bt).

Part 3

Template:Font

For isochoric motion, J=1. Therefore,

(1+at)(1+bt)=1.

One possibility is

a=b=0

This is a pure rotation.

Another possibility is that

b=a1+at

This is a combination of shear and rotation where the volume remains constant.

Part 4

Template:Font

We get invalid motions when J0. Let us consider the case where J=0. Then

(1+at)(1+bt)=0

This is possible when

at=1orbt=1.

If J<0 then

1+at<0and1+bt>0or1+at>0and1+bt<0

That is,

at<1andbt>1orat>1andbt<1

Therefore the values at which we get invalid motions are

a1torb1t.

Part 5

Derive the expression for the Green (Lagrangian) strain tensor

for the element as a function of time.

The Green strain tensor is given by

𝐄=12(𝐅T𝐅𝐈)

Recall

𝐅(t)=[(1+at)cosπt2(1+bt)sinπt20(1+at)sinπt2(1+bt)cosπt20001].

Let us make the following substitutions

A:=(1+at);B:=(1+bt);c:=cosπt2;s:=sinπt2.

Then

𝐅=[AcBs0AsBc0001]and𝐅T=[AcAs0BsBc0001].

Therefore,

𝐅T𝐅=[A2000B20001]=[(1+at)2000(1+bt)20001].

Hence,

𝐄=12([(1+at)2000(1+bt)20001][100010001])

The Green strain is

𝐄(t)=12[2at+a2t20002bt+b2t20000]

Part 6

Derive an expression for the velocity gradient as a function of

time.

The velocity is the material time derivative of the motion.

Recall that the motion is given by

x(𝐗,t)=X(1+at)cosπt2Y(1+bt)sinπt2y(𝐗,t)=X(1+at)sinπt2+Y(1+bt)cosπt2z(𝐗,t)=Z

Therefore,

vx(𝐗,t)=xt=X[acosπt2(1+at)π2sinπt2]Y[bsinπt2+(1+bt)π2cosπt2]vy(𝐗,t)=yt=X[asinπt2+(1+at)π2cosπt2]+Y[bcosπt2(1+bt)π2sinπt2]vz𝐗,t)=zt=0

We could compute the velocity gradient using

𝐥=𝐯=[vxxvxyvxzvyxvyyvyzvzxvzyvzz]

after expressing 𝐯 in terms of 𝐱. However, that makes the expression quite complicated. Instead, we will use the relation

𝐥=𝐅˙𝐅1.

The time derivative of the deformation gradient is

𝐅˙=[acosπt2(1+at)π2sinπt2bsinπt2(1+bt)π2cosπt20asinπt2+(1+at)π2cosπt2bcosπt2(1+bt)π2sinπt20000].

The inverse of the deformation gradient is

𝐅1=1(1+at)(1+bt)[(1+bt)cosπt2(1+bt)sinπt20(1+at)sinπt2(1+at)cosπt2000(1+at)(1+bt)].

Using the substitutions

A:=(1+at);B:=(1+bt);c:=cosπt2;s:=sinπt2

we get

𝐅˙=[acAsπ2bsBcπ20as+Acπ2bcBsπ20000]=[acbs0asbc0000]+π2[AsBc0AcBs0000]

and

𝐅1=1AB[BcBs0AsAc000AB].

The product is

𝐥=1AB[Bac2+Abs2BacsAbcs0BacsAbcsBas2+Abc20000]+π2[010100000]

Note that the first matrix is symmetric while the second is skew-symmetric.

Therefore, the velocity gradient is

𝐥=[a1+atcos2πt2+b1+btsin2πt2[a1+atb1+bt]cosπt2sinπt2π20[a1+atb1+bt]cosπt2sinπt2+π2a1+atsin2πt2+b1+btcos2πt20000]

Part 7

Template:Font

The rate of deformation is the symmetric part of the velocity gradient:

𝐝=[a1+atcos2πt2+b1+btsin2πt2[a1+atb1+bt]cosπt2sinπt20[a1+atb1+bt]cosπt2sinπt2a1+atsin2πt2+b1+btcos2πt20000]

The rate of deformation is the skew-symmetric part of the velocity gradient:

𝐰=π2[010100000]

Part 8

Assume that a=1 and b=2. Sketch the undeformed configuration and the deformed configuration at t=1 and t=2.  Draw both the deformed and undeformed configurations on the same plot

and label.

Recall that in the initial configuration

X1=x1(0)=0;Y1=y1(0)=0;X2=x2(0)=2;Y2=y2(0)=0;X3=x3(0)=0;Y3=y3(0)=1.

Also, the motion is

x(𝐗,t)=X(1+at)cosπt2Y(1+bt)sinπt2y(𝐗,t)=X(1+at)sinπt2+Y(1+bt)cosπt2z(𝐗,t)=Z

Plugging in the values of a and b, we get

x(𝐗,t)=X(1+t)cosπt2Y(1+2t)sinπt2y(𝐗,t)=X(1+t)sinπt2+Y(1+2t)cosπt2z(𝐗,t)=Z

At t=1,

x(𝐗,1)=2Xcosπ23Ysinπ2=3Yy(𝐗,1)=2Xsinπ2+3Ycosπ2=2Xz(𝐗,1)=Z

At t=2,

x(𝐗,2)=3Xcosπ5Ysinπ=3Xy(𝐗,2)=3Xsinπ+5Ycosπ=5Yz(𝐗,2)=Z

The deformed and undeformed configurations are shown below.

File:NFE HW10Prob1 1.png
Deformed and undeformed configurations.

Part 9

Template:Font

The deformation gradient is

𝐅(t)=[(1+t)cosπt2(1+2t)sinπt20(1+t)sinπt2(1+2t)cosπt20001].

The right Cauchy-Green deformation tensor is

𝐂=𝐅T𝐅=[(1+t)2000(1+2t)20001]

The eigenvalue problem is

(𝐂λ2𝐈)𝐍=0.

This problem has a solution if

det(𝐂λ2𝐈)=0

i.e.,

[λ4(1+t)2λ2λ2(1+2t)2+(1+t)2(1+2t)2](1λ2)=0.

The eigenvalues are (as expected)

λ12=(1+t)2;λ22=(1+2t)2;λ32=1.

The principal stretches are

λ1=(1+t);λ2=(1+2t);λ3=1.

The principal directions are (by inspection)

𝐍1=[100]T;𝐍2=[010]T;𝐍3=[001]T.

Now, the right stretch tensor is given by

𝑼=i=13λi𝑵i𝑵i

Therefore,

𝐔=λ1𝐍1𝐍1T+λ2𝐍2𝐍2T+λ3𝐍3𝐍3T.

Hence the right stretch is

𝐔=[1+t0001+2t0001]

At t=0,1,2, we have

𝐔(0)=[100010001];𝐔(1)=[200030001];𝐔(2)=[300050001].

Now

𝐑=𝐅𝐔1

and

𝐔1=[11+t00011+2t0001]

Therefore, the rotation is

𝐑=[cosπt2sinπt20sinπt2cosπt20001].

At t=0,1,2, we have

𝐑(0)=[100010001];𝐑(1)=[010100001];𝐑(2)=[100010001].

Part 10

Template:Font

A hypoelastic material behaves according to the relation

σ=𝖢:𝐝.

For an isotropic material

𝖢=λ11+2μ𝑰

Therefore,

σ=λ11:𝐝+2μ𝑰:𝐝=λtr(𝐝)1+2μ𝐝

Recall that

𝐝=[a1+atcos2πt2+b1+btsin2πt2[a1+atb1+bt]cosπt2sinπt20[a1+atb1+bt]cosπt2sinπt2a1+atasin2πt2+b1+btcos2πt20000]

Using the values of a and b from the previous part, at t=1,

𝐝=[12cos2π2+23sin2π2[1223]cosπ2sinπ20[1223]cosπ2sinπ212sin2π2+23cos2π20000]=[23000120000]

Therefore, the trace of the rate of defromation is

tr(𝐝)=76

Therefore,

σ=7λ6[100010001]+2μ[23000120000]=[7λ6+4μ30007λ6+μ0007λ6]

For the Jaumann rate

σ=σ˙+σ𝐰𝐰σ

where the spin is

𝐰=π2[010100000]

Therefore,

σ˙=[7λ6+4μ30007λ6+μ0007λ6]π2[σxxσxyσxzσxyσyyσyzσxzσyzσzz][010100000]+π2[010100000][σxxσxyσxzσxyσyyσyzσxzσyzσzz]

or,

σ˙=[7λ6+4μ30007λ6+μ0007λ6]+π2[σxyσxxσyyσyzσxxσyy2σxyσxzσyzσxz0]

For the Truesdell rate

σ=σ=σ˙σ𝐥T𝐥σ+tr(𝐥)σ.

Therefore,

σ˙=σ+σ𝐥T+𝐥σtr(𝐥)σ.

Recall,

𝐥=[a1+atcos2πt2+b1+btsin2πt2[a1+atb1+bt]cosπt2sinπt2π20[a1+atb1+bt]cosπt2sinπt2+π2a1+atsin2πt2+b1+btcos2πt20000]

For a=1, b=2, t=1, we have

𝐥=[12cos2π2+23sin2π2[1223]cosπ2sinπ2π20[1223]cosπ2sinπ2+π212sin2π2+23cos2π20000]=[23π20π2120000].

Therefore,

tr(𝐥)=76=tr(𝐝)

and

σ˙=[7λ6+4μ30007λ6+μ0007λ6]+[σxxσxyσxzσxyσyyσyzσxzσyzσzz][23π20π2120000]+[23π20π2120000][σxxσxyσxzσxyσyyσyzσxzσyzσzz]76[σxxσxyσxzσxyσyyσyzσxzσyzσzz]

Hence,

σ˙=[7λ6+4μ30007λ6+μ0007λ6]+[16σxx+πσxyπ2(σxx+σyy)12(σxz+πσyz)π2(σxx+σyy)16σyyπσxy23σyzπ2σxz12(σxz+πσyz)23σyzπ2σxz76σzz]


Problem 2: Hyperelastic Pinched Cylinder Problem

Read the following paper on shells:

Buchter, N., Ramm, E., and Roehl, D., 1994, "Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept," Int. J. Numer. Meth. Engng., 37, pp. 2551-2568.

Answer the following questions:


Solution

Part 1

Template:Font

See Wikipedia article on [w:Enhanced assumed strain|enhanced assumed strain]] .

Part 2

Template:Font

The following material properties are used:

E=16800 kN/cm 2, ν=0.4, μ=6000 kN/cm 2, and d=2/K=7.14×105 cm 2/kN. Symmetry is used and only half of the model is meshed. At the support, the model is constraint in all directions. The load of 36 kN is applied on the top of the cylinder (Fig~2. ANSYS input listing is shown Fig~6 of Appendix.

File:NFE HW10 p2 model.png
Figure 2. Meshed model

Part 3

Template:Font

The plot of force vs. edge displacement (vertical) and the deformed model are shown in Fig 3. From the plot, one sees that a load of 35.1 kN is required to deform the edge by 16 cm. This is less than 1% difference compared to the result given in the paper using 7-parameter shell theory.

File:NFE HW10 p2 fd.png
Figure 3. Left: Force vs. edge displacement. Right: Deformed model.

Problem 3: Elastic-Plastic Punch Indentation

Read the following paper on elastic-viscoplastic FEA:

Rouainia, M. and Peric, D., 1998, "A computational model for elasto-viscoplastic solids at finite strain with reference to thin shell applications," Int. J. Numer. Meth. Engng., 42, pp. 289-311.

Answer the following questions:

Solution

Part 1

Template:Font

The following data are used for the thin plate:E=70 GPa, ν=0.3, σY=240 Mpa, σt=7800 Mpa, see Fig 4 for the stress-strain data. Symmetry is used and only half of the model is meshed (Fig 4). At the support, the model is constrained in all directions. A plastic finite strained shell (SHELL43) is chosen for this simulation.

The following material properties are used for the punch and die:E=100×106 GPa, ν=0.3. The value of Young's modulus is arbitrary chosen so long as it is high enough to remain rigid during the simulation.

The meshed model is illustrated in Fig 4. A load of 10 kN is applied on the top of the punch. Load steps are split into two steps. First load step the punch is moved close to the plate to activate the contact elements (CONTAC49). The second load step, 30 kN is applied on top of the punch. ANSYS input listing is shown Fig 7 of the Appendix.

File:NFE HW10 p3 model.png
Figure 4. Left: Bi-linear stress-strain data. Right: Meshed model.

Part 2

Template:Font

The punch force vs. punch travel and the plot of the deformation at the final load step is shown in Fig 5. The curve displays similar pattern as those shown in the paper.

File:NFE HW10 p3 fd.png
Figure 5. Left: Punch force vs. punch travel. Right: Sketch of deformation at final load step.

Appendix

File:NFE HW10 p2 input.pdf
Figure 6. ANSYS input listing for Problem 3.
File:NFE HW10 p3 input.pdf
Figure 7. ANSYS input listing for Problem 3.

Template:Subpage navbar