Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 15

From testwiki
Jump to navigation Jump to search

Problem 1: Part 15

Template:Font

The modified laminar rate of deformation is

[DxxDyyDxy]=[2.483714.9020.5]

Alternatively, we can write

๐ƒlam=[2.48370.50.514.902].

The modified laminar stress rate is

DDt[σxxσyyσxy]=[100600601000030][2.483714.9020.5]=[645.76015].

Alternatively, we can write

DDt(σlam)=[645.7615150].

To get the global stress rate and rate of deformation, we have to rotate the components to the global basis using

DDt(σ)=๐‘lamDDt(σlam)๐‘lamT;๐ƒ=๐‘lam๐ƒlam๐‘lamT.

Computing these quantities gives us

DDt(σ)=[337.88322.88322.88307.88].

and

๐ƒ=[6.70928.69298.68295.7092].

The Maple code for the above computations is given below.

> #
> # Apply plane stress condition
> #
> Dxx := DLamVoigt[1,1];
> Dyy := -C13*Dxx/C11;
> #
> # Updated laminar rate of deformation
> #
> DLamVoigtUpd := linalg[matrix](3,1,[Dlam[1,1], Dyy, Dlam[1,2]]);
> #
> # Updated laminar stress
> #
> DDtSigLamVoigtUpd := evalm(CLamVoigt&*DLamVoigtUpd);
> #
> # Rotate back to global basis
> #
> PlaneStressSig := array(1..2,1..2,symmetric):
> PlaneStressSig[1,1] := DDtSigLamVoigtUpd[1,1]:
> PlaneStressSig[2,2] := DDtSigLamVoigtUpd[2,1]:
> PlaneStressSig[1,2] := DDtSigLamVoigtUpd[3,1]:
> evalm(PlaneStressSig);
> GlobalPlaneStressSig := evalm(Rlam&*PlaneStressSig&*RlamT);
> PlaneStressDlam := array(1..2,1..2,symmetric):
> PlaneStressDlam[1,1] := DLamVoigtUpd[1,1]:
> PlaneStressDlam[2,2] := DLamVoigtUpd[2,1]:
> PlaneStressDlam[1,2] := DLamVoigtUpd[3,1]:
> evalm(PlaneStressDlam);
> GlobalPlaneStressDlam := evalm(Rlam&*PlaneStressDlam&*RlamT);

Template:Subpage navbar