Nonlinear finite elements/Homework 7/Hints

From testwiki
Jump to navigation Jump to search

๏ปฟ

Hints 1: Index notation

Index notation:

σij=2μεij+λεkkδij.

If j=i

σii=2μεii+λεkkδii=2μεkk+3λεkk=(2μ+3λ)εkk
σkk=(2μ+3λ)εkk

Dummy indices are replaceable.

Hint 2: Index notation

Index notation:

σij=2μεij+λεkkδij.

Multiply by δij:

σijδij=2μεijδij+λεkkδijδijσjj=2μεii+λεkkδiiσkk=2μεkk+3λεkkσkk=(2μ+3λ)εkk

Multiplication by δij leads to replacement of one index.

Aijδkl=?Aijδjl=?

Hint 3: Index notation

Index notation:

σ=σij๐ži๐žjε=εij๐ži๐žj

From the definition of dyadic product, we can show

(๐š๐›):(๐ฎ๐ฏ)=(๐š๐ฎ)(๐›๐ฏ)

Contraction gives:

σ:ε=(σij๐ži๐žj):(εkl๐žk๐žl)=σijεkl(๐ži๐žj):(๐žk๐žl)=σijεkl(๐ži๐žk)(๐žj๐žl)=σijεklδikδjl=σijεij

Hint 4: Tensor product

Index notation:

ε=εij๐ži๐žj๐–ข=Cijkl๐ži๐žj๐žk๐žl

Definition of dyadics products:

(๐š๐›)๐ฑ=(๐›๐ฑ)๐š(๐š๐›๐œ)๐ฑ=(๐œ๐ฑ)(๐š๐›)(๐š๐›๐œ๐)๐ฑ=(๐๐ฑ)(๐š๐›๐œ)

We can show that

(๐š๐›๐œ๐):(๐ฎ๐ฏ)=((๐š๐›๐œ๐)๐ฏ)๐ฎ

Contraction gives:

๐–ข:ε=(Cijkl๐ži๐žj๐žk๐žl):(εmn๐žm๐žn)=Cijklεmn(๐ži๐žj๐žk๐žl):(๐žm๐žn)=Cijklεmn((๐ži๐ži๐žk๐žl)๐žn)๐žm=Cijklεmn(๐žl๐žn)(๐ži๐žj๐žk)๐žm=Cijklεmnδln(๐žk๐žm)(๐ži๐žj)=Cijklεmnδlnδkm๐ži๐žj=Cijklεkl

Hint 5 : Tensor product

Tensor Product of two tensors:

๐‘จ=Aij๐ži๐žj๐‘ฉ=Bkl๐žk๐žl

Tensor product:

๐‘จ๐‘ฉ=(Aij๐ži๐žj)(Bkl๐žk๐žl)=AijBkl๐ži๐žj๐žk๐žl

Hint 6: Vector transformations

Change of basis: Vector transformation rule

vi'=Lijvj

Lij are the direction cosines.

L11=๐ž1'๐ž1;L12=๐ž1'๐ž2;L13=๐ž1'๐ž3L21=๐ž2'๐ž1;L22=๐ž2'๐ž2;L23=๐ž2'๐ž3L31=๐ž3'๐ž1;L32=๐ž3'๐ž2;L33=๐ž3'๐ž3

In matrix form

๐ฏ'=๐‹๐ฏ;๐ฏ=๐‹T๐ฏ';๐‹๐‹T=๐ˆ๐‹T=๐‹1

Other common form: Vector transformation rule

vi'=Qjivj
Q11=๐ž1๐ž1';Q12=๐ž1๐ž2';Q13=๐ž1๐ž3'Q21=๐ž2๐ž1';Q22=๐ž2๐ž2';Q23=๐ž2๐ž3'Q31=๐ž3๐ž1';Q32=๐ž3๐ž2';Q33=๐ž3๐ž3'

In matrix form

๐ฏ'=๐T๐ฏ;๐ฏ=๐๐ฏ';๐๐T=๐ˆ๐T=๐1

Hint 7: Tensor transformations

Change of basis: Tensor transformation rule

Tij'=LipLjqTpq

where Lij are the direction cosines.

In matrix form,

๐“'=๐‹๐“๐‹T

Other common form

Tij'=QpiQqjTpq

In matrix form,

๐“'=๐T๐“๐

Template:Subpage navbar